Abstract:
During the execution of the combustion stopping process for continuing the combustion of the remaining cylinders while the combustion of some of the plurality of cylinders provided in the engine is stopped, the first vibration damping process for generating the vibration damping torque in the first rotary electric machine M1 and the second vibration damping process for generating the vibration damping torque in the second rotary electric machine M2 are executed.
Abstract:
A control device for an internal combustion engine includes a knock control system, a cooling system, and an electronic control unit. The knock control system is configured to ignite a spark plug an ignition crank angle obtained by retarding the ignition crank angle in response to an occurrence of the knocking. The electronic control unit is configured to supply a command value corresponding to a target value of a cooling parameter to the cooling system such that the cooling system performs cooling of the internal combustion engine according to the command value. The electronic control unit is configured to correct the command value based on a KCS learned value such that as the KCS learned value increases, a correction amount for correcting the command value increases in correction amount in a direction in which a cooling capacity of the cooling system increases.
Abstract:
An internal combustion engine includes a water jacket, a cooling water pump as a cooling liquid pump, and an adjusting valve. A control device for the internal combustion engine executes the water stoppage control of increasing the temperature of the engine body by limiting the discharge of the cooling liquid from the water jacket by the adjusting valve, and an automatic stop and automatic startup control of automatically stopping and automatically starting the internal combustion engine. The control device increases the fuel injection amount for automatically starting the internal combustion engine in a case where the water stoppage control is being executed when the internal combustion engine is automatically stopped as compared with a case where the water stoppage control is not being executed when the internal combustion engine is automatically stopped.
Abstract:
High temperature (HT) and low temperature (LT) cooling water, the LT cooling water being at a lower temperature than the HT cooling water, circulate in HT and LT cooling water flows in respective channels. A controller controls to set the temperature of the LT cooling water lower in a case where an operating point of an engine lies in a particular region in an operational region of the engine, the particular region including a region in which the load is high and the engine speed is low, than in a case where the operating point lies in an operational region other than the particular region. Furthermore, the controller narrows the particular region in a direction toward higher loads in a case where the temperature of the HT cooling water is lower than a predetermined temperature.
Abstract:
A cooling system of an internal combustion engine includes an adjustment valve configured to adjust a flow rate of a cooling liquid discharged from a water jacket. A controller for the cooling system includes circuitry configured to execute flow-restriction control that controls the adjustment valve to restrict discharge of the cooling liquid from the water jacket, thereby increasing temperature of an engine body. The circuitry is configured to execute the flow-restriction control so that temperature of the cooling liquid in the water jacket at which the flow-restriction control is terminated is lower when an ambient pressure is low than when the ambient pressure is high.
Abstract:
A stop and start control device for an internal combustion engine is configured to perform an automatic stop control for stopping combustion in the internal combustion engine while a vehicle is travelling. The stop start control device is configured to initiate a restart operation during vehicle travel when a restart request generates before the vehicle stops in a state in which the combustion in the internal combustion engine has been stopped by the automatic stop control. The restart operation during vehicle travel is a restart operation for the internal combustion engine while the vehicle is travelling. The stop and start control device is configured to set an ignition timing of a first ignition in the restart operation during vehicle travel to an ignition timing advanced from an ignition timing of a second ignition in the restart operation during vehicle travel.
Abstract:
An ECU is configured to control an SOC control center of a battery and perform an engine torque suppression control. The engine torque suppression control is a control that suppresses output of an engine during a predetermined period of time after starting a system, and causes motor generators to output torque supplementing the suppressed output of the engine. When a deposition amount of PM on a filter exceeds a first specified amount, the ECU raises the SOC control center by controlling the motor generators before stopping the system as compared to when the deposition amount of PM is lower than a specified amount, and performs the engine torque suppression control at a next start after stopping the system.
Abstract:
A control device for a vehicle including an engine, drive wheels, and brake devices includes an electronic control unit configured to: execute braking force maintaining control for operating the brake devices; execute first idling control for converging an engine speed to a first target idling speed while the vehicle is traveling; execute second idling control for converging the engine speed to a second target idling speed while the vehicle is stopped; restart the engine and execute the second idling control when executing the braking force maintaining control, while the vehicle is stopped; restart the engine and execute the first idling control without executing the braking force maintaining control, while the vehicle is traveling; and execute engine speed control for setting the first target idling speed higher than the second target idling speed, in a state where drive torque output from the engine is transmitted to the drive wheels.
Abstract:
A cooling system of an internal combustion engine includes a control valve that regulates the flow of a coolant in a circulation circuit, and an electronic control unit. The electronic control unit is configured to have the following functions: controlling the driving of a motor of the control valve; calculating a motor torque based on an effective voltage applied to the motor; calculating a valve body torque that is part of the motor torque, based on an angular acceleration rate of the motor; and calculating a driving stress based on a difference between the motor torque and the valve body torque.
Abstract:
A coolant circuit of an engine cooling apparatus includes a first passage where coolant flows through a radiator and a second passage where coolant flows without passing through the radiator. A coolant control valve controls a first passage flow rate Frad and a second passage flow rate Fsec. An outlet coolant temperature sensor detects an outlet coolant temperature Tout, which is a coolant temperature before a branching point of the first passage and the second passage. An inlet coolant temperature sensor detects an inlet coolant temperature Tin, which is a coolant temperature after a merging point of the first passage and the second passage. A coolant temperature estimator calculates a radiator coolant temperature Trad, which is a coolant temperature at a coolant exit of the radiator, when the first passage flow rate Frad is greater than or equal to a specified flow rate using equation (1). Trad = Tin - ( Tout - Tin ) × Fsec Frad ( 1 )