Abstract:
The present disclosure provides a deep trench capacitor device. A first capacitor electrode is made up of a doped region of semiconductor substrate in which two or more trenches are arranged. A second capacitor electrode is made up of a continuous body of conductive material. The continuous body of conductive material includes a lower body portion filling the two or more trenches and an upper body portion extending continuously over the lower body portion. The upper body portion extends upwardly out of the trenches by a non-zero distance. A capacitor dielectric liner is arranged in the two or more trenches to separate the first and second capacitor electrodes. The capacitor dielectric liner extends continuously out of the two or more trenches along outer sidewalls of the upper body portion.
Abstract:
The present disclosure provides a streamlined approach to forming vertically structured devices such as deep trench capacitors. Trenches and a contact plate bridging the trenches are formed using one lithographic process. A hard mask is formed over the substrate and etched through the mask to form two or more closely spaced trenches. The hard mask is then reduced by an isotropic etch process. The etch removes the hard mask preferentially between the trenches. Chemical mechanical polishing removes the conductive material down to the remaining hard mask layer, whereby conductive material remains in mask openings and forms a conductive bridge across the trenches.
Abstract:
A method for forming a trench capacitor includes providing a substrate of a semiconductor material having a hard mask layer; etching the hard mask layer and the substrate to form at least one trench extending into the substrate; and performing pull-back etching on the hard mask layer. In the pull-back etching, a portion of the hard mask layer defining and adjacent to side walls of an opening of the at least one trench is removed. A resulting opening on the hard mask layer has a width dimension larger than a width dimension of an opening of the at least one trench extending into the substrate. The method further comprises doping the semiconductor material defining upper surfaces and sidewalls of the at least one trench to form a doped well region.
Abstract:
The present disclosure provides a streamlined approach to forming vertically structured devices such as deep trench capacitors. Trenches and a contact plate bridging the trenches are formed using one lithographic process. A hard mask is formed over the substrate and etched through the mask to form two or more closely spaced trenches. The hard mask is then reduced by an isotropic etch process. The etch removes the hard mask preferentially between the trenches. Chemical mechanical polishing removes the conductive material down to the remaining hard mask layer, whereby conductive material remains in mask openings and forms a conductive bridge across the trenches.
Abstract:
Some embodiments of the present disclosure relate to a processing tool. The tool includes a housing enclosing a processing chamber, and an input/output port configured to pass a wafer through the housing into and out of the processing chamber. A back-side macro-inspection system is arranged within the processing chamber and is configured to image a back side of the wafer. A front-side macro-inspection system is arranged within the processing chamber and is configured to image a front side of the wafer according to a first image resolution. A front-side micro-inspection system is arranged within the processing chamber and is configured to image the front side of the wafer according to a second image resolution which is higher than the first image resolution.
Abstract:
MRAM devices and methods of forming the same are provided. One of the MRAM devices includes a dielectric layer, a resistance variable memory cell and a conductive layer. The dielectric layer is over a substrate and has an opening. The resistance variable memory cell is in the opening and includes a first electrode, a second electrode and a magnetic tunnel junction layer between the first electrode and the second electrode. The conductive layer fills a remaining portion of the opening and is electrically connected to one of the first electrode and the second electrode of the resistance variable memory cell.
Abstract:
The present disclosure provides a deep trench capacitor device. A first capacitor electrode is made up of a doped region of semiconductor substrate in which two or more trenches are arranged. A second capacitor electrode is made up of a continuous body of conductive material. The continuous body of conductive material includes a lower body portion filling the two or more trenches and an upper body portion extending continuously over the lower body portion. The upper body portion extends upwardly out of the trenches by a non-zero distance. A capacitor dielectric liner is arranged in the two or more trenches to separate the first and second capacitor electrodes. The capacitor dielectric liner extends continuously out of the two or more trenches along outer sidewalls of the upper body portion.
Abstract:
A package includes a first integrated circuit die and a second integrated circuit die over and bonded to the first integrated circuit die. A first surface region of the second integrated circuit die is hydrophobic, and the first integrated circuit die and the second integrated circuit die are bonded together with dielectric-to-dielectric bonds and metal-to-metal bonds. The package further includes a first insulating material over the first integrated circuit and surrounding the second integrated circuit die. The first insulating material contacts the first surface region.
Abstract:
Some embodiments of the present disclosure relate to a processing tool. The tool includes a housing enclosing a processing chamber, and an input/output port configured to pass a wafer through the housing into and out of the processing chamber. A back-side macro-inspection system is arranged within the processing chamber and is configured to image a back side of the wafer. A front-side macro-inspection system is arranged within the processing chamber and is configured to image a front side of the wafer according to a first image resolution. A front-side micro-inspection system is arranged within the processing chamber and is configured to image the front side of the wafer according to a second image resolution which is higher than the first image resolution.
Abstract:
Some embodiments of the present disclosure relate to a processing tool. The tool includes a housing enclosing a processing chamber, and an input/output port configured to pass a wafer through the housing into and out of the processing chamber. A back-side macro-inspection system is arranged within the processing chamber and is configured to image a back side of the wafer. A front-side macro-inspection system is arranged within the processing chamber and is configured to image a front side of the wafer according to a first image resolution. A front-side micro-inspection system is arranged within the processing chamber and is configured to image the front side of the wafer according to a second image resolution which is higher than the first image resolution.