摘要:
A semiconductor device having Cu wiring including a basic crystal structure which can reduce surface voids, and an inspecting technique for the semiconductor device. In the semiconductor device, surface voids can be reduced down to 1/10 or less of a current practical level by specifying a barrier layer and a seed layer and setting a proportion (frequency) of occupation of a coincidence site lattice (CSL) boundary having a grain boundary Sigma value 27 or less to all crystal grain boundaries of a Cu wiring to 60% or higher. Alternatively, a similar effect of surface void reduction can be obtained by specifying a barrier layer and a seed layer and setting a proportion (frequency) of occupation of a coincidence site lattice (CSL) boundary having a grain boundary Sigma value 3 to all crystal grain boundaries of a Cu wiring to 40% or higher.
摘要:
A semiconductor device is provided wherein stacked semiconductor substrates are electrically coupled together in a satisfactory state by a conductor buried in the interior of a through hole. A first semiconductor substrate includes a substrate having main surfaces, further includes a semiconductor element formed within and over the substrate, a wiring coupled to the semiconductor element electrically, and a conductive layer formed in the interior of a through hole, the through hole extending through mutually confronting first and second main surfaces as the main surfaces of the substrate and reaching the wiring. The first semiconductor substrate and a second semiconductor substrate are stacked and the conductive layer is coupled to a wiring of the second semiconductor substrate electrically. In a second main surface of the conductive layer, a recess is formed around an end portion of the through hole so that a bottom wall surface of the recess is present in the interior of the substrate. A conductive material which constitutes the conductive layer is filled in the interior of the recess.