Abstract:
A method inducing chimerism and allograft tolerance by co-infusion of stein/progenitor-like cells and donor cells, wherein the donor cells can be bone marrow cells. The method also comprises the conditioning comprising depletion of CD4+ and CD8+ T-cells and administration of low doses of anti-neoplastic drugs. The inventive method comprises an aspect wherein allograft tolerance is induced without systemically suppressing the immune system.
Abstract:
An embodiment of the invention provides a method for determining a patient-specific probability of disease. The method collects clinical parameters from a plurality of patients to create a training database. A fully unsupervised Bayesian Belief Network model is created using data from the training database; and, the fully unsupervised Bayesian Belief Network is validated. Clinical parameters are collected from an individual patient; and, such clinical parameters are input into the fully unsupervised Bayesian Belief Network model via a graphical user interface. The patient-specific probability of disease is output from the fully unsupervised Bayesian Belief Network model and sent to the graphical user interface for use by a clinician in pre-operative planning. The fully unsupervised Bayesian Belief Network model is updated using the clinical parameters from the individual patient and the patient-specific probability of disease.
Abstract:
In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100° C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.
Abstract:
The present invention relates to a method of amplifying in vitro stemcells. In this method hematopoietic CD34.sup.+ stem and progenitor cells are isolated from human bone marrow and contacted with endothelial cells. The contacted stem cells and endothelial cells are cultured in the presence of at least one cytokine in an amount sufficient to support amplification/expansion of the hematopoietic CD34.sup.+ stem and progenitor cells. This method produces increased yields of hematopoietic CD34.sup.+ stem and progenitor cells which can be used in human therapeutics.
Abstract:
A print head assembly includes the feature of snap-in, tool-less replaceability. The print head is intended for an application where extended use is expected and replacement, due to wear, will be necessary by nontechnical users of the printing system. In one embodiment, the print head utilizes two pins which slide into slots formed in the printer body. The print head is free to pivot about the two pins and is urged against a platen by the force of bias springs and a loaded pin. The loaded pin engages with, and forces upwrd on the heat-radiating fins extending from the bottom of the print head. Shelves formed in the printer body cover engage the two pins of the print head and force the print head, against the forces of the bias springs, into a proper alignment position when the cover is closed. This allows firm engagement of the print head with the platen, and proper alignment thereof, without fixing the print head to a mounting structure.
Abstract:
A method inducing chimerism and allograft tolerance by co-infusion of stem/progenitor-like cells and donor cells, wherein the donor cells can be bone marrow cells. The method also comprises the conditioning comprising depletion of CD4+ and CD8+ T-cells and administration of low doses of anti-neoplastic drugs. The inventive method comprises an aspect wherein allograft tolerance is induced without systemically suppressing the immune system.
Abstract:
A photovoltaic-thermal (PV-T) system and a method of cooling photovoltaic (PV) cells in the system is described herein. Energy from an excitation source such as the sun hits the PV cells in the PV-T system causing heating that reduces PV efficiency. The PV cells are cooled by fluid in an intact heat-transfer system making a heated water byproduct while the PV cells release a form of energy. In addition, the PV-T system can be implemented in a desalination plant to harvest energy and heat for desalination processes. The present invention also includes methods for transferring heat from PV cells to the earth to improve PV performance and reduce thermal shock to the PV cells.
Abstract:
A sensor for detecting the breakthrough of hardness in a water softener measures a change in the conductivity of elongated cation-exchange material in contact with the treated water.
Abstract:
In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100° C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.
Abstract:
One aspect of the present invention relates to methods and compositions for attenuating xenograft rejection by administering, to an animal receiving the xenograft, an amount of a polymer-derivatized xenoantigen (hereinafter “xenopolymer”) effective for inhibiting or lessening the severity of hyperacute rejection response (HAR), or other immunological response to the graft, that is dependent on the presence of the xenoantigen on the grafted tissues or cells. In certain embodiments, the xenopolymer is administered in an amount sufficient to neutralize host antibodies (“xenoreactive antibodies” or “XNA”) immunoreactive with the xenoantigen. The xenopolymer may additionally, or alternatively, be used as a tolerogen (or anergen) for the xenoantigen, e.g., able to suppress, to some degree, the production/secretion of XNAs by the immune system of the host.