Abstract:
A clamp assembly includes a rail configured to receive a first fluidic assembly, and a carriage slidably mounted to the rail and configured to receive a second fluidic assembly. The carriage is operable to establish a first fluid tight seal between the first fluidic assembly and a chromatography column received within the clamp assembly, and to establish a second fluid tight seal between the second fluidic assembly and the chromatography column.
Abstract:
Exemplary embodiments are directed to vent valves, systems and methods generally involving a valve body that includes a seat retainer, a needle and a seat. The seat includes a bore extending there through and the needle includes a needle stem and a needle head. The seat is disposed inside the seat retainer. The needle stem is disposed inside the bore. The needle is configured to be pulled through the seat to stop flow through the bore. Exemplary embodiments are further directed to a system including a stem return spring mechanism and a solenoid return spring mechanism. A processing device is configured to actuate the solenoid return spring mechanism to permit the stem return spring mechanism to pull the needle through the seat to stop flow through the bore.
Abstract:
Described is a mobile phase fitting having reduced corrosion and erosion. The fitting includes a coupling body, compression screw, compression member and gasket. The coupling body has a threaded bore at one end, a tapered cavity, a narrow bore and a fluid channel. The compression screw has an axial bore to receive a tube and a threaded outer surface in engagement with the threaded bore of the coupling body. The compression member is disposed in the tapered cavity and has an axial opening to pass the tube and a tapered surface to engage a surface of the tapered cavity. The gasket is disposed in the narrow bore and has one surface in contact with the first internal surface and has a parallel surface to receive an end face of the tube. Mobile phase flows along a path that includes the tube, an opening in the gasket and the fluid channel.
Abstract:
To heat a flowing liquid, an apparatus includes a heater block assembly having a heater block made of thermally conductive material. The heater block assembly has a tube inlet, a tube outlet, and a tube path between the tube inlet and tube outlet. Tubing extends through the tube path from the tube inlet to the tube outlet. The tubing is in thermal communication with the heater block. A heater cartridge, in thermal communication with the heater block, is configured to provide heat to the heater block for transfer to liquid flowing through the tubing between the tube inlet and the tube outlet of the heater block assembly. Circuitry is in electrical communication with the heater cartridge to control a temperature of the heater block by controlling operation of the heater cartridge.
Abstract:
Exemplary embodiments are directed to modular solenoid valve kits and associated methods, generally involving a valve body that includes a plurality of actuator section components and a plurality of head section components. The plurality of actuator section components includes a drive solenoid, a solenoid return spring, a stroke calibration collar and an actuator-to-head calibration collar. The plurality of head section components includes a needle, a stem return spring, a seal and a seat. The plurality of actuator section components and head section components are adapted to be interchanged to create a pull-through normally open valve, a pull-through normally closed valve, a push-in normally open valve and a push-in normally closed valve. That is, the kits and methods allow for modification of one valve type (e.g., a pull-through normally open valve, a pull-through normally closed valve, a push-in normally open valve and a push-in normally closed valve) into a different type.
Abstract:
To heat a flowing liquid, an apparatus includes a heater block assembly having a heater block made of thermally conductive material. The heater block assembly has a tube inlet, a tube outlet, and a tube path between the tube inlet and tube outlet. Tubing extends through the tube path from the tube inlet to the tube outlet. The tubing is in thermal communication with the heater block. A heater cartridge, in thermal communication with the heater block, is configured to provide heat to the heater block for transfer to liquid flowing through the tubing between the tube inlet and the tube outlet of the heater block assembly. Circuitry is in electrical communication with the heater cartridge to control a temperature of the heater block by controlling operation of the heater cartridge.
Abstract:
An apparatus for use in a liquid chromatography system includes a chromatography port and a tubing assembly having a chromatography tube coupled at one end to the chromatography port. The end of the tube has an end face covered with a corrosion-resistant material, for example, gold. The corrosion-resistant nature of the material protects the end of the tube from corrosion or erosion, which improves the quality and reliability of a seal between the end face of the tube and a sealing surface of the port. Alternatively, or in addition to covering the end face of the tube with the corrosion-resistant material, a gasket covered with or made of the corrosion-resistant material can be disposed between the end face of the tube and the port. This gasket extends the reach of the tube to facilitate bottoming out the tube within the port.
Abstract:
A clamp assembly includes a rail configured to receive a first fluidic assembly, and a carriage slidably mounted to the rail and configured to receive a second fluidic assembly. The carriage is operable to establish a first fluid tight seal between the first fluidic assembly and a chromatography column received within the clamp assembly, and to establish a second fluid tight seal between the second fluidic assembly and the chromatography column.
Abstract:
Exemplary embodiments are directed to modular solenoid valve kits and associated methods, generally involving a valve body that includes a plurality of actuator section components and a plurality of head section components. The plurality of actuator section components includes a drive solenoid, a solenoid return spring, a stroke calibration collar and an actuator-to-head calibration collar. The plurality of head section components includes a needle, a stem return spring, a seal and a seat. The plurality of actuator section components and head section components are adapted to be interchanged to create a pull-through normally open valve, a pull-through normally closed valve, a push-in normally open valve and a push-in normally closed valve. That is, the kits and methods allow for modification of one valve type (e.g., a pull-through normally open valve, a pull-through normally closed valve, a push-in normally open valve and a push-in normally closed valve) into a different type.
Abstract:
Exemplary embodiments of the present disclosure include systems, apparatuses, and methods that are directed to controlling pressure in a pressurized flow system, such as a C02-based chromatography system or other pressurized flow systems. Exemplary embodiments of the present disclosure comprise one or more apparatuses, systems or methods for implementing multiple pressure regulators to control pressure. In addition to providing pressure control, apparatuses, systems and methods described herein dampen damaging thermal effects caused by pressure drops of a mobile phase including C02.