Abstract:
An apparatus relating generally to an interposer is disclosed. In such an apparatus, the interposer has a plurality of conductors and a plurality of charge attracting structures. The plurality of charge attracting structures are to protect at least one integrated circuit die to be coupled to the interposer to provide a stacked die. The plurality of conductors include a plurality of through-substrate vias.
Abstract:
A method of enabling the use of a programmable device having impaired circuitry includes determining one or more locations of the impaired circuitry of the programmable device; generating a defect map for the programmable device based on the determined locations of the impaired circuitry; generating a plurality of configuration bitstreams to implement a circuit in the programmable device; selecting one of the plurality of configuration bitstreams that does not use the impaired circuitry indicated by the defect map; and programming the programmable device with the selected configuration bitstream.
Abstract:
A semiconductor package includes an interposer and a plurality of integrated circuit (IC) dice disposed on and intercoupled via the interposer. A first IC die has a clock speed rating that is greater than a clock speed rating of another of the IC dice. A plurality of programmable voltage tuners are coupled to the plurality of IC dice, respectively. A first voltage tuner is coupled to the first IC die, and the first voltage tuner is programmed to reduce a voltage level of voltage input to the first voltage tuner and output the reduced voltage to the first IC die.
Abstract:
A method for tracking an interposer die of a stacked silicon interconnect technology (SSIT) product includes forming a plurality of dummy components on the interposer die, and modifying one or more of the plurality of dummy components on the interposer die to form a unique identifier for the interposer die. An apparatus for a stacked silicon interconnect technology (SSIT) product includes an interposer die, and a plurality of dummy components at the interposer die. One or more of the plurality of dummy components is modifiable to form a unique identifier for the interposer die.
Abstract:
A semiconductor package includes an interposer and a plurality of integrated circuit (IC) dice disposed on and intercoupled via the interposer. A first IC die has a clock speed rating that is greater than a clock speed rating of another of the IC dice. A plurality of programmable voltage tuners are coupled to the plurality of IC dice, respectively. A first voltage tuner is coupled to the first IC die, and the first voltage tuner is programmed to reduce a voltage level of voltage input to the first voltage tuner and output the reduced voltage to the first IC die.
Abstract:
Examples described herein provide for determining a recipe for identifying from which buckets integrated circuit chips are taken to form units of a multi-chip apparatus. In an example, a method uses a processor-based system and uses a Markov Decision Process. Buckets are defined based on respective characteristics of manufactured chips. Each of the manufactured chips is binned into a respective one of the buckets based on the characteristic of the respective manufactured chip. A recipe for identifying from which of the buckets to take one or more of the manufactured chips to incorporate into respective ones of the units of the multi-chip apparatus is generated.
Abstract:
An integrated circuit (IC) chip package assembly apparatus and techniques for assembling IC chip packages are described. For example, a techniques for fabricating an IC package include (A) determining a first package assembly yield (PAY) across a first die pool comprising a first plurality of dies having a performance criteria within a first predefined range; (B) determining a second PAY across a second die pool comprising a second plurality of dies having a performance criteria within a second predefined range of performance criteria that is different than the first predefined range of performance criteria, the second plurality of dies comprising a portion of the first plurality of dies; and (C) generating a final assembly sequence in response to analyzing the first and second PAYs, the final assembly sequence comprising rules for combining dies in accordance with obtaining a higher of the first PAY and the second PAY.
Abstract:
An apparatus for a stacked silicon interconnect technology (SSIT) product comprises an interposer die, a plurality of integrated circuit dies, a plurality of active components forming an active connection between the integrated circuit dies and the interposer die, and a plurality of dummy components at the interposer die, the dummy components not forming an active connection between the integrated circuit dies and the interposer die. At least a subset of the dummy components forms a pattern, and the pattern comprises an identifier for the interposer die.
Abstract:
An apparatus relating generally to an interposer is disclosed. In such an apparatus, the interposer has a plurality of conductors and a plurality of charge attracting structures. The plurality of charge attracting structures are to protect at least one integrated circuit die to be coupled to the interposer to provide a stacked die. The plurality of conductors include a plurality of through-substrate vias.