摘要:
In accordance with the objectives of the invention a new method is provided for the creation of layers of gate oxide having an unequal thickness. Active surface regions are defined over the surface of a substrate, a thick layer of gate oxide is grown over the active surface. A selective etch is applied to the thick layer of gate oxide, selectively reducing the thickness of the thick layer of gate oxide to the required thickness of a thin layer of gate oxide. The layer of thick gate oxide is blocked from exposure. N2 atoms are implanted into the exposed surface of the thin layer of oxide, rapid thermal processing is performed and the blocking mask is removed from the surface of the thick layer of gate oxide. A high concentration of nitride has now been provided in the thin layer of gate oxide.
摘要:
A method is described to fabricate RF inductor devices on a silicon substrate. Low-k or other dielectric material is deposited and patterned to form inductor lower plate trenches. Trenches are lined with barrier film such as TaN, filled with copper, and excess metal planarized using chemical mechanical polishing (CMP). Second layer of a dielectric material is deposited and patterned to form via-hole/trenches. Via-hole/trench patterns are filled with barrier material, and the dielectric film in between the via-hole/trenches is etched to form a second set of trenches. These trenches are filled with copper and planarized. A third layer of a dielectric film is deposited and patterned to form via-hole/trenches. Via-hole/trenches are then filled with barrier material, and the dielectric film between via-hole/trench patterns etched to form a third set of trenches. These trenches are filled with copper metal and excess metal removed by CMP to form said RF inductor.
摘要:
A first method of reducing semiconductor device substrate effects comprising the following steps. O+or O2+are selectively implanted into a silicon substrate to form a silicon-damaged silicon oxide region. One or more devices are formed over the silicon substrate proximate the silicon-damaged silicon oxide region within at least one upper dielectric layer. A passivation layer is formed over the at least one upper dielectric layer. The passivation layer and the at least one upper dielectric layer are patterned to form a trench exposing a portion of the silicon substrate over the silicon-damaged silicon oxide region. The silicon-damaged silicon oxide region is selectively etched to form a channel continuous and contiguous with the trench whereby the channel reduces the substrate effects of the one or more semiconductor devices. A second method of reducing substrate effects under analog devices includes forming an analog device on a SOI substrate and then selectively etching the silicon oxide layer of the SOI substrate to form a channel at least partially underlying the analog device.
摘要:
A first method of reducing semiconductor device substrate effects comprising the following steps. O+ or O2+ are selectively implanted into a silicon substrate to form a silicon-damaged silicon oxide region. One or more devices are formed over the silicon substrate proximate the silicon-damaged silicon oxide region within at least one upper dielectric layer. A passivation layer is formed over the at least one upper dielectric layer. The passivation layer and the at least one upper dielectric layer are patterned to form a trench exposing a portion of the silicon substrate over the silicon-damaged silicon oxide region. The silicon-damaged silicon oxide region is selectively etched to form a channel continuous and contiguous with the trench whereby the channel reduces the substrate effects of the one or more semiconductor devices. A second method of reducing substrate effects under analog devices includes forming an analog device on a SOI substrate and then selectively etching the silicon oxide layer of the SOI substrate to form a channel at least partially underlying the analog device.
摘要翻译:降低半导体器件衬底效应的第一种方法包括以下步骤。 O +或O 2 +被选择性地注入到硅衬底中以形成硅损坏的氧化硅区域。 在硅衬底附近,在至少一个上部电介质层内的硅损坏的氧化硅区域附近形成一个或多个器件。 在所述至少一个上介电层上形成钝化层。 图案化钝化层和至少一个上电介质层以形成在硅损坏的氧化硅区域上暴露硅衬底的一部分的沟槽。 选择性地蚀刻硅损坏的氧化硅区域以形成与沟槽连续且邻接的沟道,由此沟道减小了一个或多个半导体器件的衬底效应。 减少模拟器件下的衬底效应的第二种方法包括在SOI衬底上形成模拟器件,然后选择性地蚀刻SOI衬底的氧化硅层,以形成至少部分在模拟器件下面的沟道。
摘要:
A CMOS RF device and a method to fabricate said device with low gate contact resistance are described. Conventional MOS transistor is first formed with isolation regions, poly-silicon gate structure, sidewall spacers around poly gate, and implanted source/drain with lightly and heavily doped regions. A silicon dioxide layer such as TEOS is deposited, planarized with chemical mechanical polishing (CMP) to expose the gate and treated with dilute HF etchant to recess the silicon dioxide layer below the surface of the gate. Silicon nitride is then deposited and planarized with CMP and then etched except around the gates, using a oversize poly-silicon gate mask. Inter-level dielectric mask is then deposited, contact holes etched, and contact metal is deposited to form the transistor. During contact hole etch over poly-silicon gate, silicon nitride around the poly gate acts as an etch stop. Resulting structure with direct gate contact achieves significantly reduced gate resistance and thereby improved noise performance at high frequency operation, increased unit power gain frequency (f.,), and reduced gate delay.
摘要:
A method is described to fabricate RF inductor devices on a silicon substrate. Low-k or other dielectric material is deposited and patterned to form inductor lower plate trenches. Trenches are lined with barrier film such as TaN, filled with copper, and excess metal planarized using chemical mechanical polishing (CMP). Second layer of a dielectric material is deposited and patterned to form via-hole/trenches. Via-hole/trench patterns are filled with barrier material, and the dielectric film in between the via-hole/trenches is etched to form a second set of trenches. These trenches are filled with copper and planarized. A third layer of a dielectric film is deposited and patterned to form via-hole/trenches. Via-hole/trenches are then filled with barrier material, and the dielectric film between via-hole/trench patterns etched to form a third set of trenches. These trenches are filled with copper metal and excess metal removed by CMP to form said RF inductor.
摘要:
A new method of provided for forming in one plane layers of semiconductor material having both high and low dielectric constants. Layers, having selected and preferably non-identical parameters of dielectric constants, are successively deposited interspersed with layers of etch stop material. The layers can be etched, creating openings there-through that can be filled with a layer of choice.
摘要:
A new method of provided for forming in one plane layers of semiconductor material having both high and low dielectric constants. Layers, having selected and preferably non-identical parameters of dielectric constants, are successively deposited interspersed with layers of etch stop material. The layers can be etched, creating openings there-through that can be filled with a a layer of choice.
摘要:
A new method of provided for forming in one plane layers of semiconductor material having both high and low dielectric constants. Layers, having selected and preferably non-identical parameters of dielectric constants, are successively deposited interspersed with layers of etch stop material. The layers can be etched, creating openings there-through that can be filled with a layer of choice.
摘要:
A method of forming a capacitor comprising the following steps. A substrate having a lower low-k dielectric layer formed thereover is provided with the lower low-k dielectric layer having a dielectric constant of less than about 3.0. Metal vertical electrode plates are formed within the lower low-k dielectric layer so that the adjacent metal vertical electrode plates have lower low-k dielectric layer portions therebetween. The lower low-k dielectric layer portions between the adjacent metal vertical electrode plates are replaced with high-k dielectric material trench portions having a dielectric constant of greater than about 3.0.