摘要:
Aspects of the present invention include a method and an apparatus that may be utilized to reduce dishing and improve cleaning efficiency of a material layer residue (e.g., copper residual) by varying a substrate potential in a substrate processing system. For example, by utilizing multiple polishing steps and applying different voltages (e.g., while a substrate is being in a polishing station), ECMP can be used to effectively reduce dishing and it can be used to enhance copper residual cleaning as well as minimizing a possibility of arcing, which can occur at the end of the polishing process, when a substrate is moved from a polishing station.
摘要:
Embodiments of a pad assembly for processing a substrate are provided. The pad assembly includes a plurality of discrete members and a plurality of apertures. Each of the plurality of discrete members include a first conductive layer and a second conductive layer, with an isolation layer therebetween, and a recess for byproduct accumulation. The second conductive layer comprises a plurality of reaction surfaces that are orthogonal to the upper and lower surfaces of the pad assembly.
摘要:
Compositions and methods for processing a substrate having a conductive material layer disposed thereon are provided. In one embodiment, a composition for processing a substrate having a conductive material layer disposed thereon is provided which composition includes an acid based electrolyte, a chelating agent, a corrosion inhibitor, a passivating polymeric material, a pH adjusting agent, a solvent, and a pH between about 3 and about 10. The composition is used in a method to form a passivation layer on the conductive material layer, abrading the passivation layer to expose a portion of the conductive material layer, applying a bias to the substrate, and removing the conductive material layer.
摘要:
A method for electrochemical mechanical polishing (ECMP) is disclosed. The polishing rate and surface finish of the layer on the wafer are improved by controlling the surface speed of both the platen and head, controlling the current applied to the pad, and preselecting the density of the perforations on the fully conductive polishing pad. ECMP produces much higher removal rates, good surface finishes, and good planarization efficiency at a lower down force. Generally, increasing the surface speed of both the platen and the head will increase the surface smoothness. Also, increasing the current density on the wafer will increase the surface smoothness. There is virtually no difference in the smoothness of the wafer surface between the center, middle, and edge of the wafer. For copper, removal rates of 10,000 Å/min and greater can be achieved.
摘要:
Compositions and methods for processing a substrate having a conductive material layer disposed thereon are provided. In one embodiment, a composition for processing a substrate having a conductive material layer disposed thereon is provided which composition includes an acid based electrolyte, a chelating agent, a corrosion inhibitor, a passivating polymeric material, a pH adjusting agent, a solvent, and a pH between about 3 and about 10. The composition is used in a method to form a passivation layer on the conductive material layer, abrading the passivation layer to expose a portion of the conductive material layer, applying a bias to the substrate, and removing the conductive material layer.
摘要:
Aspects of the present invention include a method and an apparatus that may be utilized to reduce dishing and improve cleaning efficiency of a material layer residue (e.g., copper residual) by varying a substrate potential in a substrate processing system. For example, by utilizing multiple polishing steps and applying different voltages (e.g., while a substrate is being in a polishing station), ECMP can be used to effectively reduce dishing and it can be used to enhance copper residual cleaning as well as minimizing a possibility of arcing, which can occur at the end of the polishing process, when a substrate is moved from a polishing station.
摘要:
Compositions and methods for processing a substrate having a conductive material layer disposed thereon are provided. In one embodiment, a composition for processing a substrate having a conductive material layer disposed thereon is provided which composition includes an acid based electrolyte, a chelating agent, a corrosion inhibitor, a passivating polymeric material, a pH adjusting agent, a solvent, and a pH between about 3 and about 10. The composition is used in a method to form a passivation layer on the conductive material layer, abrading the passivation layer to expose a portion of the conductive material layer, applying a bias to the substrate, and removing the conductive material layer.
摘要:
A method for processing a surface of a substrate is provided. In one embodiment, the method includes pretreating a conductive layer of the substrate by exposing the substrate to a pretreatment fluid, and planarizing the pre-treated substrate in the system.
摘要:
Embodiments of a conditioning head for in-situ conditioning and/or cleaning a processing pad of a CMP, ECMP, or other processing system are provided. In one embodiment, the conditioning head includes a brush disposed in a central cavity. A cleaning fluid is provided through the central cavity of the conditioning head to a processing pad. The brush spins and moves laterally across the surface of the processing pad. The cleaning solution dispensed through the conditioning head dissolves by-products of the processing operation while the brush gently wipes the processing pad. A lip of the conditioning head retains the cleaning fluid and cleaning waste, thereby minimizing contamination of the area outside of the conditioning head. The cleaning waste is removed from the processing pad via passages formed near the outer periphery of the conditioning head.
摘要:
Compositions and methods for processing a substrate having a conductive material layer disposed thereon are provided. In one embodiment, a method of electrochemically processing a substrate using a conductive polishing article is provided. The method includes disposing a substrate having a conductive material layer formed thereon in a process apparatus comprising a cathode coupled to the conductive polishing article and an anode, wherein the substrate is in electrical contact with the anode, supplying a polishing composition comprising a cathodic inhibitor and an anodic inhibitor, forming a protective film on the cathode to prevent corrosion of the cathode, and polishing the substrate. In another embodiment, a composition for processing a substrate having a conductive material layer disposed thereon is provided which composition includes a corrosion inhibitor selected from the group of an amino acid based inhibitor, a polymeric based corrosion inhibitor, an oxidizer, a chelating inhibitor or combinations thereof.