摘要:
A method includes forming an amorphous carbon layer over a first dielectric layer formed over a substrate, forming a second dielectric layer over the amorphous carbon layer; and forming an opening within the amorphous carbon layer and second dielectric layer by a first etch process to partially expose a top surface of the first dielectric layer. A substantially conformal metal-containing layer is formed over the second dielectric layer and within the opening. The second dielectric layer and a portion of the metal-containing layer are removed. The amorphous carbon layer is removed by an oxygen-containing plasma process to expose a top surface of the first dielectric layer. An insulating layer is formed over the metal-containing layer, and a second metal-containing layer is formed over the insulating layer to form a capacitor.
摘要:
A method includes forming an amorphous carbon layer over a first dielectric layer formed over a substrate, forming a second dielectric layer over the amorphous carbon layer; and forming an opening within the amorphous carbon layer and second dielectric layer by a first etch process to partially expose a top surface of the first dielectric layer. A substantially conformal metal-containing layer is formed over the second dielectric layer and within the opening. The second dielectric layer and a portion of the metal-containing layer are removed. The amorphous carbon layer is removed by an oxygen-containing plasma process to expose a top surface of the first dielectric layer. An insulating layer is formed over the metal-containing layer, and a second metal-containing layer is formed over the insulating layer to form a capacitor.
摘要:
A method includes the steps of: (a) forming a conductive layer within a dielectric layer formed over a substrate; (b) forming a material layer over the conductive layer and the dielectric layer; (c) forming an opening within the material layer by an etch process to expose a portion of the dielectric layer and a top surface of the conductive layer; (d) forming a first metal-containing layer within the opening substantially covering sidewalls of the material layer and the exposed portion of the second dielectric layer; and (e) removing the material layer by an oxygen-containing plasma process to expose a portion of outer sidewalls of the first metal-containing layer.
摘要:
The present disclosure provides a method for fabricating a semiconductor device including providing a semiconductor substrate comprising a first surface and a second surface, wherein at least one imaging sensor is located adjacent the first surface, activating a dopant layer in the semiconductor substrate adjacent the second surface using a localized annealing process, and etching the dopant layer.
摘要:
The present disclosure provides a method for fabricating a semiconductor device including providing a semiconductor substrate comprising a first surface and a second surface, wherein at least one imaging sensor is located adjacent the first surface, activating a dopant layer in the semiconductor substrate adjacent the second surface using a localized annealing process, and etching the dopant layer.
摘要:
A method of making a thin film resistor includes: forming a doped region in a semiconductor substrate; forming a dielectric layer over the substrate; forming a thin film resistor over the dielectric layer; forming a contact hole in the dielectric layer before annealing the thin film resistor, wherein the contact hole exposes a portion of the doped region; and performing rapid thermal annealing on the thin film resistor after forming the contact hole.
摘要:
The present disclosure provides a method for fabricating a semiconductor device including providing a semiconductor substrate comprising a first surface and a second surface, wherein at least one imaging sensor is located adjacent the first surface, activating a dopant layer in the semiconductor substrate adjacent the second surface using a localized annealing process, and etching the dopant layer
摘要:
A process for forming backside illuminated devices is disclosed. Specifically, the process reduces processing damage to wafers caused by poor bond quality at the wafer edge ring. In one embodiment, a wafer edge trimming step is implemented prior to bonding the wafer to the substrate. A pre-grind blade is used to create a straight edge around the wafer perimeter, eliminating any sharp edges. In another embodiment, edge trimming is performed after the wafer has been bonded to the substrate, and a pre-grind blade is used to remove portion of the wafer edge ring subject to poor bonding quality before grinding. The final thickness of the ground wafer is about 50 microns in either case.
摘要:
The present disclosure provides a semiconductor structure. The semiconductor structure includes a dielectric material layer on a silicon substrate, the dielectric material layer being patterned to define a plurality of regions separated by the dielectric material layer; a first buffer layer disposed on the silicon substrate; a heterogeneous buffer layer disposed on the first buffer layer; and a gallium nitride layer grown on the heterogeneous buffer layer only within the plurality of regions.
摘要:
The present disclosure provides a semiconductor structure. The semiconductor structure includes a dielectric material layer on a silicon substrate, the dielectric material layer being patterned to define a plurality of regions separated by the dielectric material layer; a first buffer layer disposed on the silicon substrate; a heterogeneous buffer layer disposed on the first buffer layer; and a gallium nitride layer grown on the heterogeneous buffer layer only within the plurality of regions.