Abstract:
An implant system includes a fixation device that, in turn can include an expandable implant alone or in combination with an auxiliary implant. The expandable implant includes an expandable implant body that is made from an expandable material. The expandable material includes a polymer matrix and an expandable gas source contained within at least a portion of the polymer matrix. The implant system can further include an energy source configured to heat the polymer matrix to a temperature above its glass transition temperature, thereby causing the gas source to expand inside the polymer matrix. The fixation device can further include an insertion instrument configured to implant the fixation device into an anatomical cavity.
Abstract:
An actuator is implanted inside the body and attached to a bone. The actuator is controlled from outside the body using a changing magnetic field or creating mechanical motion of the tissue. The changing field is used to create power inside the actuator and precisely control its operation without requiring a transdermal connection. The power generated inside actuator can also be used to transmit data to the outside.
Abstract:
The present invention relates to devices for moving a two bodies 1, 2 relative to each other. The device of the invention is essentially characterized by the fact that it comprises two parts 11, 12, a projecting portion 14 mounted to co-operate with one of the two parts, a cavity 13 formed in the other part and complementary in shape to the projecting portion 14, the two parts 11, 12 being mounted to move relative to each other in such a manner that the projecting portion 14 penetrates into the cavity 13, the projecting portion 14 forming a closed loop made of an electrically conductive material which completely surrounds a magnetic core 101 which is not completely surrounded by the mechanism 100 for interconnecting the projecting portion 14 and the first part 11. The invention is applicable in particular to a bone prosthesis, a medullary nail for lengthening bones, a rod for correcting and supporting the spinal column.
Abstract:
A process of injecting a thermoplastic material (20) within an annulus fibrosus of a selected intervertebral disk. The thermoplastic material (20) is heated by an injection device to a predetermined high temperature to provide flow of the thermoplastic material from a needle into the annulus fibrosus of the disk upon injection. After injection, the thermoplastic material is cooled by the body temperature of the patient for setting of the thermoplastic material in a non-flowing state while retaining a suitable resilience to provide desired cushioning. The thermoplastic material (20) may also be injected into an abnormal curvature of the spine to correct the abnormal curvature. The preferred thermoplastic material is gutta percha or a gutta percha compound.
Abstract:
An implant system includes a fixation device that, in turn can include an expandable implant alone or in combination with an auxiliary implant. The expandable implant includes an expandable implant body that is made from an expandable material. The expandable material includes a polymer matrix and an expandable gas source contained within at least a portion of the polymer matrix. The implant system can further include an energy source configured to heat the polymer matrix to a temperature above its glass transition temperature, thereby causing the gas source to expand inside the polymer matrix. The fixation device can further include an insertion instrument configured to implant the fixation device into an anatomical cavity.
Abstract:
The present invention relates to devices for moving a two bodies 1, 2 relative to each other. The device of the invention is essentially characterized by the fact that it comprises two parts 11, 12, a projecting portion 14 mounted to co-operate with one of the two parts, a cavity 13 formed in the other part and complementary in shape to the projecting portion 14, the two parts 11, 12 being mounted to move relative to each other in such a manner that the projecting portion 14 penetrates into the cavity 13, the projecting portion 14 forming a closed loop made of an electrically conductive material which completely surrounds a magnetic core 101 which is not completely surrounded by the means 100 for interconnecting the projecting portion 14 and the first part 11. The invention is applicable in particular to a bone prosthesis, a medullary nail for lengthening bones, a rod for correcting and supporting the spinal column.
Abstract:
An orthopaedic implant for implanting between adjacent vertebrae and a spine, includes a generally annular bag; and a hardened polymer with the bag. The method of fusing adjacent vertebrae in a spine includes the steps of forming an access hole in an annulus of a disc between the adjacent vertebrae; removing the nucleus within the disc to form a cavity surrounded by the annulus; placing a generally annular bag within the cavity; filling the bag with a polymer; injecting bone particles into the cavity surrounded by the annular bag; and hardening the polymer.
Abstract:
Bone cement is removed from a bone cavity, such as the intramedullary canal, during a prosthetic revision. The bond cement is pre-molded by a thermal chisel which includes a shaft for extending into the bone cavity, a plasticizer chisel on a working end of the shaft, and a heat element carried by the shaft for heating the chisel to a temperature within a range of temperatures sufficient to plasticize the bone cement. This deforms and weakens the bone cement upon direct non-impact type contact between the heated tip of the chisel and the cement. The cement is removed by pre-molding it with the heated working end of the thermal chisel, preferably by molding a distally located circumferential furrow in the bone cement and then molding circumferentially spaced apart longitudinal furrows from the circumferential groove to the proximal end of the bone cement. Upon rehardening of the bone cement, these thermally molded furrows form weakened areas within the bone cement so that the regions of bone cement between the weakened areas can be removed by an impact type chisel. Preferably, each section of bone cement is removed intact by impact force applied to a molded step groove in a proximal end surface of the section. Removal of the bone cement in sections by these procedures avoids harmful heat transfer to the bone wall.
Abstract:
An implant system includes a fixation device that, in turn can include an expandable implant alone or in combination with an auxiliary implant. The expandable implant includes an expandable implant body that is made from an expandable material. The expandable material includes a polymer matrix and an expandable gas source contained within at least a portion of the polymer matrix. The implant system can further include an energy source configured to heat the polymer matrix to a temperature above its glass transition temperature, thereby causing the gas source to expand inside the polymer matrix. The fixation device can further include an insertion instrument configured to implant the fixation device into an anatomical cavity.