Abstract:
Described herein are UV reflective particles, and methods of forming UV reflective particles, comprising extruding a film having a plurality of alternating layers of polycarbonate (PC) and poly(methyl methacrylate) (PMMA), wherein each layer is less than 150 nm thick, and grinding the film into particles having a median particle size less than 200 microns.
Abstract:
A process and associated system for creating color effects using extrudable material, such as plastic and metal for example, are presented. Flows of first and second viscous materials of respective colors are provided and then combined in a predetermined pattern to form a stream of combined viscous material. A dynamic mixer is the then used to apply a predetermined dividing, overturning and combining motion to the stream of combined viscous material to partially mix the first viscous material and the second viscous material, such that upon exiting the dynamic mixer, the first material of the first color and the second material of the second color form a color pattern in the stream of combined viscous material. The dynamic mixer has elements configured for acquiring a specific radial orientation in a range of radial orientations that may be varied during the application of the dividing, overturning and combining motion to the stream of combined viscous material to cause variations in the color pattern in the stream of combined viscous material. Sheets of extruded material may be created using such process and system and used in the manufacturing of many different products including, but not limited to, kayaks, stand-up paddle boards, garden furniture and many others. In some embodiments, the sheets may be characterized by color bands extending diagonally with reference to a longitudinal extent of the sheet.
Abstract:
A blowing head, a method for producing a blown film, and a blown film installation include the use of plate spiral distributors in blown film installations for distributing melt steams arriving from extruders and for combining the melt streams to form an annular gap stream in several layers in an annular gap leading to a tubular die. The melt streams in a plate spiral distributor are initially bundled and then forwarded in a bundled manner to a common co-extrusion flow. The distributer has a plurality of spirals in superimposed layers, and the spirals of two layers have a junction for pre-combining the melt streams of two layers, and in that starting from the junction, a common guide leading to the annular gap is provided for combining there the pre-combined melt streams with the annular gap stream.
Abstract:
A process for producing a film is provided and includes extruding a multilayer film with a core component comprising from 15 to 1000 alternating layers of layer A material and layer B material. The layer A material has a crystallization temperature, T1c. The process includes passing the multilayer film across an air gap having a length from 10 mm to 800 mm. The process includes moving the multilayer film across a roller at a rate from 20 kg/hr to 1000 kg/hr. The process includes maintaining the roller at a temperature from T1c—30° C. to T1c, and forming a multilayer film with a layer A having a thickness from 50 nm to 500 nm and an effective moisture permeability from 0.77 to 2.33 g-mil/m2/24 hrs.
Abstract:
In one embodiment, a method of forming an extruded board includes mixing a resin and a foaming agent, melting the mixed resin and foaming agent to form a uniformly colored extrudate, differentially expanding voids formed from the foaming agent within the uniformly colored extrudate by passing the uniformly colored extrudate through a breaker plate, forming a board with the differentially expanded voids and uniformly colored extrudate, and forming lightened portions on an outermost surface of the formed board.
Abstract:
A layer sequence repeater module for a co-extrusion die includes a cell formed of a plurality of thin annular disks stacked on top of each other in an axial direction of the co-extrusion die. Each disk includes a plurality of openings aligned with openings in the adjacent disks, thus forming multiple inner and outer melt passages. At least one of the layer sequence repeater module includes at least one first cap disk, at least one second cap disk, at least one distribution disk, at least one repeater disk and at least one spreader disk. The layer sequence repeater module may be a separately assembled and individually removable module of the co-extrusion die. Alternatively or additionally, the layer sequence repeater module may be incorporated into a module of the co-extrusion die.
Abstract:
A device for extruding/dispensing materials on a substrate includes a housing with at least two channels formed to facilitate flow. The housing includes entrance ports for each of the channels for receiving different materials. The housing further includes an exit port for co-extruding the materials on the substrate to generate a relatively fine feature with a relatively high aspect ratio.
Abstract:
In one embodiment, a method of forming an extruded board includes mixing a resin and a foaming agent, melting the mixed resin and foaming agent to form a uniformly colored extrudate, differentially expanding voids formed from the foaming agent within the uniformly colored extrudate by passing the uniformly colored extrudate through a breaker plate, forming a board with the differentially expanded voids and uniformly colored extrudate, and forming lightened portions on an outermost surface of the formed board.
Abstract:
A system and method are presented in which a flow of plastic is extruded to obtain nano-sized features by forming multiple laminated flow streams, flowing in parallel through the non-rotating extrusion system. Each of the parallel laminated flow streams are subjected to repeated steps in which the flows are compressed, divided, and overlapped to amplify the number of laminations. The parallel amplified laminated flows are rejoined to form a combined laminated output with nano-sized features. The die exit is formed to provide a tubular shape.
Abstract:
A prepreg that contains a plurality of unidirectionally aligned continuous fibers embedded within a thermoplastic polymer matrix is provided. In addition to continuous fibers, the prepreg also contains a plurality of long fibers that are combined with the continuous fibers so that they are randomly distributed within the thermoplastic matrix. As a result, at least a portion of the long fibers become oriented at an angle (e.g., perpendicular) relative to the direction of the continuous fibers. Through such orientation, the long fibers can substantially increase the mechanical properties of the prepreg in the transverse direction (e.g., strength) and thus achieve a more isotropic material. Although unique isotropic prepregs are one aspect of the present invention, it should be understood that this is not a requirement. In fact, one notable feature of the present invention is the ability to tailor the mechanical properties of the prepreg for an intended application by selectively controlling certain process parameters, such as the type of long fibers employed, the type of continuous fibers employed, the concentration of the long fibers, the concentration of the continuous fibers, the thermoplastic resin(s) employed, etc.