Abstract:
Device for laying up a composite product with fibrous rovings made from glass, carbon, aramid and other similar filaments, designed especially for production of composite reinforcements or supporting elements such as the reinforcement of tailgates of personal vehicles, consists of individual unwinding spools (2) of fibrous rovings (21) rotatably arranged around the composite product (1). The unwinding spools (2) are installed on the set of the rotary disc rings (3) which are mounted on a common fixed ring frame (4) and equipped with independent drives (5) with pre-programmed control of direction and speed of their rotation wherein the composite product (1) is during the laying up procedure alternately fixed to individual carrier grippers (8) of at least one program-controlled manipulator (9). In each rotary disc ring (3) as well as in fixed ring frame (4) at least one lateral passage (6) is created for entry and exit of the composite product (1) between the unwinding spools (2).
Abstract:
Method for manufacturing a continuous composite tube comprising translating a tube liner through a manufacturing station wherein the manufacturing station comprises a winding station and a consolidation station located at a distance downstream of the winding station; winding a composite tape on the tube liner at the winding station for forming a tape layer; consolidating the composite tape on the tube liner at a consolidation zone of the consolidation station by pressing and heating to the tape.
Abstract:
A method of forming a homogenous composite pipe of unspecified length from strips of fiber reinforced thermoplastic material is disclosed. A mandrel is arranged stationary in a process direction to extend freely from a first supported end to a second end. A slip-sheath is applied about the mandrel. The thermoplastic material strips are wound about the slip-sheath. A section of the thermoplastic material strip winding is consolidated. The slip-sheath is formed from tape material which is applied longitudinally onto the mandrel surface. The slip-sheath is connected to a puller arranged downstream of the material in the process direction. Consolidated pipe sections are pulled off from the second end of the mandrel in synchronization with the winding and consolidation. An assembly for carrying out the method.
Abstract:
A winding apparatus for and method of manufacturing helically wound structures (116) includes: a rotating faceplate (74) upon which are mounted a forming station for forming a supply of strip material before it is wound into a desired structure; a plurality of inner supports in the form of rollers (110) mounted for radial displacement and rotation about an axis; an outer faceplate (118) having a plurality of outer support rollers (92) mounted for radial displacement and rotation about an axis. In operation, the inner rollers act to support an inner portion S1 of strip material wound thereon whilst allowing it to be supplied from an inner diameter thereof to said forming station and the outer rollers (92) act to support an outer portion S2 of said strip. The inner rollers (110) are moved radially to maintain support of said strip material as it is consumed.
Abstract:
The embodiments are directed to a method and apparatus for preferably producing a two layer off-axis composite prepreg material in tape form that has fiber direction at angles such as plus or minus five degrees to the longitudinal direction of the backing paper. The use of such off-axis prepreg composite material tape is primarily for fabricating high length-to-width ration parts such as composite wing stringers or spars for aircraft.
Abstract:
A method of transferring an uncured composite laminate skin from a lay-up surface of a male mandrel tool to a female cure tool includes defining multiple vacuum zones on the lay-up surface, each zone corresponding to one of a multiple of portions into which the skin is to be separated. For example, to separate the skin into two portions, a low profile seal of a first membrane to the lay-up surface is formed at a first vacuum zone and a second low profile seal for a second membrane is formed at a second vacuum zone. The method further includes laying up a composite laminate skin over all the vacuum zones; separating the composite laminate skin into portions, for example, a first portion over the first vacuum zone and a second portion over the second vacuum zone; and releasing the portions individually into cure tools having an outside mold line surface.
Abstract:
A breathing circuit component includes an inlet, an outlet and an enclosing wall. The enclosing wall defines a gases passageway between the inlet and the outlet. At least a region of the enclosing wall is formed from a breathable material that allows the passage of water vapor without allowing the passage of liquid water or respiratory gases. The breathing circuit component may be the expiratory limb of a breathing circuit.
Abstract:
Armouring tape (102) for wrapping around a hose (300) during its fabrication by a hose-wrapping machine (200; 400). The tape (102) is coiled into a roll (100) having a hollow core (109) from which the tape (102) is unwound to be wrapped onto the hose (300). The hose-wrapping machine (200; 400) rotatably mounts the roll (100) with the hose (300) passing through the roll core (109), the roll axis (108) being skewed to the hose axis (304) by the helix angle at which the tape (102) is to be wrapped onto and along the hose (300). The hose (300) is moved longitudinally through the longitudinally static roll (100) and at the same time, the roll (100) is rotated around the longitudinal axis (304) of the non-rotating hose (300). The armouring tape (102) unwinds from the inside (109) of the roll onto and along the hose (300) so as to wrap the hose (300) with a uniform helix of armouring tape (102). The use of a tape (102) containing an elastomer-embedded array of armouring cables (104) enables armouring wires and elastomer layers to be applied without a stabilising layer of fabric, and greatly simplifies setting-up of machinery for hose fabrication. The use of a tape roll (100) which can be unwound from its inside (109) enables hoses to be wrapped without having to orbit rolls that are very large and heavy.
Abstract:
A method of transferring an uncured composite laminate skin from a lay-up surface of a male mandrel tool to a female cure tool includes defining multiple vacuum zones on the lay-up surface, each zone corresponding to one of a multiple of portions into which the skin is to be separated. For example, to separate the skin into two portions, a low profile seal of a first membrane to the lay-up surface is formed at a first vacuum zone and a second low profile seal for a second membrane is formed at a second vacuum zone. The method further includes laying up a composite laminate skin over all the vacuum zones; separating the composite laminate skin into portions, for example, a first portion over the first vacuum zone and a second portion over the second vacuum zone; and releasing the portions individually into cure tools having an outside mold line surface.
Abstract:
The present invention provides a unitary run flat tire (RFT) reinforcement that is formed into a relatively rigid shape. The reinforcement is insertable into a mold for an RFT support and can maintain the needed structural rigidity for such insertion. Further, the invention provides an RFT support that is molded and includes the RFT reinforcement. The invention also provides a wheel assembly including a tire, a rim, and an RFT support between the rim and the tire, where the support includes the RFT reinforcement. The RFT support can have a colored indicator formed or subsequently applied thereto to indicate one or more attributes of the support.