Abstract:
This invention relates in general to the field of safety devices, and more particularly, but not by way of limitation, to systems and methods for providing advanced warning and risk evasion when hazardous conditions exist. In one embodiment, a vicinity monitoring unit is provided for monitoring, for example, oncoming traffic near a construction zone. In some embodiments, the vicinity monitoring unit may be mounted onto a construction vehicle to monitor nearby traffic and send a warning signal if hazardous conditions exist. In some embodiments, personnel tracking units may be worn by construction workers and the personnel tracking units may be in communication with the vicinity monitoring unit. In some embodiments, a base station is provided for monitoring activities taking place in or near a construction site including monitoring the locations of various personnel and vehicles within the construction site.
Abstract:
The invention regards to a method for assisting a driver in driving a vehicle, comprising the steps of producing sensor data by at least one sensor physically sensing the environment of a host vehicle and/or obtaining data conveying information about the environment of a host vehicle, generating a plurality of representation segments each segment being a portion of an entire area of representation of the environment of the host vehicle at a particular point in time wherein a relative position of the portion of such representation segment with respect to a current position of the host vehicle corresponds to a possible position of the host vehicle at that particular point in time, combining the representation segments to a spatio-temporal representation of the environment of the host vehicle; evaluating the spatio-temporal representation and outputting an assistance signal on the basis of an evaluation result.
Abstract:
A system and method for providing sensor-based navigation correction of a GPS-sensed position of an aircraft includes a synthetic vision system. The synthetic vision system captures a visual image of the surrounding area via image sensors and generates a location model based on the image. A georeference engine compares the location model to static high-resolution terrain and obstacle databases to determine a corrected position of the aircraft. The georeference engine then updates the GPS-sensed position with the corrected position, transmitting the corrected position to the combiner. The combiner generates for display an enhanced image based on the visual image and the corrected position of the aircraft.
Abstract:
A ship perimeter information display device is provided. The device includes a sensor information input unit connected with a sensor equipped in a first ship and for receiving an input of a detection result of the sensor, an AIS information input unit for receiving an input of VDO information that is a VHF data link own-ship message contained in AIS information transmitted from the first ship to a second ship, a display unit for displaying a situational image illustrating a situation around the first ship, and a control unit for displaying, on the display unit, information indicating a difference between first state information of the first ship obtained based on the detection result of the sensor and second state information of the first ship obtained based on the VDO information.
Abstract:
Systems and aircraft for avoiding a collision between an obstacle an aircraft on a ground surface are provided. In some embodiments, the aircraft includes a wing and a stabilizer and a collision avoidance system includes proximity sensors, video imagers, and a display. Proximity sensors are disposed on the wing and the stabilizer. The respective proximity sensors are configured to transmit first and second obstacle detection signals. A first video imager is disposed on the wing and a second video imager is disposed on a rear portion of the aircraft. The respective video imagers are configured to generate video signals associated with the wing and with the stabilizer. The display is configured to generate video images of the regions in response to detection of objects in the regions.
Abstract:
A radar device is provided, which includes an extractor configured to extract a representative point of a target from a radar echo, a representative point memory configured to store the representative points extracted by the extractor, for a plurality of scans, an estimator configured to estimate movement information on the target indicated by the representative points based on the information stored in the representative point memory, a determinator configured to determine a possibility of a collision based on the movement information on the target estimated by the estimator, and an acquisition-and-tracking module configured to acquire and track the target determined to have the possibility of a collision by the determinator.
Abstract:
A radar system includes an antenna. The radar system comprises a transmitter coupled to the antenna. The transmitter provides a radar signal. The radar signal includes a first set of pulses having a high bandwidth and a second set of pulses having a lower bandwidth. In one embodiment, the radar system is used for wind shear detection and the antenna is a smaller antenna.
Abstract:
A method for detecting targets using a mobile radar having a rotary antenna, notably small targets buried in radar clutter, without increasing the number of false detections, includes determining pre-detections during N antenna revolutions, including determining pre-detections revolution by revolution, each pre-detection being stored in a grid of cells centered on the position that the radar occupied at the start of the current revolution, each grid cell corresponding to an azimuth range and a distance range. This step also includes, at the end of each revolution, a step of shifting all the pre-detections stored in the grid during the previous revolutions by the movement undergone by the radar during the last revolution. The method also includes determining detections, a target being detected from the moment that a set of pre-detections stored in the grid has its distances to the radar which constitute a linear progression during the N antenna revolutions.
Abstract:
The invention relates to a device for monitoring obstructions for an aircraft including data storage, an anticollision device and viewing devices, wherein the monitoring device comprises a detector to detect in real-time obstructions, of terrain type and of human constructions type, in a close environment of the aircraft in a flight situation, a sensor to identify the obstructions at risk calculating identification parameters, a circuit to calculate criticality of the obstructions, a display to display both the obstructions with the identification and criticality parameters of the obstructions, and a generator of alerts to describe the situation according to a combination of the identification and criticality parameters. One or more embodiments of the invention is a monitoring system adapted for zones close to the aircraft and in the flight zones not visible to the crew. One or more embodiments of the invention applies particularly to helicopters executing low-altitude flights. It relates more particularly to military carriers such as rescue carriers.
Abstract:
Systems and methods differentiate weather, such as storm cells and/or turbulence regions, based on location relative to a planned flight path of an aircraft. An exemplary embodiment compares a location of the weather with a location of a region of space corresponding to the planned flight path of the aircraft. In response to the location of the weather region being outside of the region of space, an icon is presented on a display corresponding to the weather using a first icon format. In response to location of the weather being within the region of space, the icon corresponding to the weather is presented on the display using a second icon format, the second icon format different from the first icon format.