Abstract:
Aerodynamic device for a motor-vehicle including a panel structure located under the front part of the motor-vehicle and elastically biased towards a raised position and configured to be moved towards a lowered position due to an airflow which invests the motor-vehicle during travel. The aerodynamic device includes a bag structure provided inside of a cavity for receiving in its interior the airflow which invests the motor-vehicle during travel, in such a way that above a predetermined threshold value of the motor-vehicle speed, the bag structure is inflated and pushes the panel structure towards its lowered position.
Abstract:
A system for variable actuation of an engine valve of an engine includes a master piston driven by a cam of a camshaft. A slave piston is driven by the master piston by a volume of pressurized fluid. The slave piston causes the engine valve to open, against the action of a spring. A control valve controls a communication between pressurized fluid and an environment at lower pressure, with which a fluid accumulator is in communication. A control unit is programmed for controlling the control valve according to one or more different valve modes. When one of these valve modes is actuated, the control valve opens the communication in advance with respect to the end of the lift cycle of the cam, and not after closing of the engine valve to prevent or reduce a decrease in pressure in the volume of pressurized fluid after closing of the engine valve.
Abstract:
Automotive electronic control unit programmed to realtime estimate either or both of vehicle mass and road slope, wherein; a. road slope, is estimated; a1. when vehicle is considered stopped based on an accelerometer signal indicative of vehicle acceleration, wherein the vehicle is considered stopped in the presence of substantially zero values of a speed signal indicative of vehicle speed, and a2. when vehicle is in rectilinear and curvilinear motion by implementing a road slope observer based on a linear Kalman filter, which is designed to: a21. operate based on signals indicative of vehicle speed and acceleration, and a22. compensate for accelerometric disturbances due to; a221. vehicle static pitch resulting from vehicle load distribution, and a222. vehicle dynamic pitch due to acceleration to which vehicle is subjected during motion, and a223. accelerometric disturbance components due to vehicle lateral dynamics; b. vehicle mass is estimated: b1. when vehicle is in motion, and b2. based on a recursive least square algorithm with forgetting factor, and b3. based on an accelerometric signal indicative of vehicle acceleration, on a vehicle speed signal, and other signals representing a vehicle propulsive/resistive torque, and b4. at different low gears, to provide a mass estimation and an associated variance for each gear, and b5. based on mass estimations and corresponding variances for each gear, and b6. compensating for accelerometer disturbances due to: b61, vehicle dynamic pitch; and b62. accelerometric disturbance components due to vehicle lateral dynamics; and b7. minimizing uncertainties on propulsive/resistive torque due to gear efficiency and rolling resistance.
Abstract:
A seating system for a motor vehicle provides for a seat and a child safety seat defined by a body, which forms part of a seat cushion of the seat. The system has a releasable fastening apparatus of the ISOFIX type comprising two lower anchoring elements and two upper anchoring elements which can be selectively engaged by connecting elements carried by the body for securing the latter to the seat in a lowered position and a raised position, respectively.
Abstract:
Described herein is a unit for conversion of thermal energy including: —a first heat-exchange unit defining a first flow path for a first thermovector fluid; and—a second heat-exchange unit defining a second flow path for a second thermovector fluid. The second flow path is obtained by a plurality of cartridge elements each including at least one element made of thermoelectric material. The second heat-exchange unit includes a first manifold element and a second manifold element, each including a connection interface to said plurality of cartridge elements, which is configured for providing a hydraulic connection with inlet orifices and outlet orifices of the cartridge elements, and an electrical connection to first electrodes and second electrodes of said plurality of cartridge elements electrically connected to the elements made of thermoelectric material.
Abstract:
A bodywork or chassis component for a vehicle includes a first sheet having a first connection flange and a second sheet having a second connection flange, the first and second sheets being joined in correspondence of the respective first and second connection flanges. The first connection flange is a flange folded back towards the first sheet so as to define a valley with the first sheet. The second connection flange is overlapped to said first connection flange for an overlap length and it is at least in part joined to said first connection flange by a welding at that joins a perimeter edge of the second connection flange to a side of the first connection flange external with respect to said valley. The first and second connection flanges are parallel to one another in correspondence of the overlap length. The invention further includes a method for manufacturing of the aforementioned component.
Abstract:
An air outlet device has a supporting structure suitable for communicating, in use, with an air ventilation system, and an outlet member that is configured so as to supply an air flow along an outlet axis and is coupled to the supporting structure so as to rotate by 180° about a joint axis orthogonal to the outlet axis, to assume two opposite configurations. The outlet member comprises a plurality of deflecting walls defining a plurality of air ducts, which are arranged about the outlet axis and distributed axially in sequence. The deflecting walls are shaped and/or positioned so as to guide the air in the air ducts in directions having a radial component. At least one of the deflecting walls has a series of through-holes made in positions that are spaced apart about the outlet axis.
Abstract:
A method for locating a tool for industrial operations that is positioned in a sequence of operating points of an operating sequence associated to different positions on a component on which work is to be carried out, includes associating a light source to the tool and at least three light sources identifying a position reference triplet fixed with respect to the component. A stereovision apparatus having at least two video cameras acquires at least two respective images of the tool and component. The displacement of the operating points on the component is tracked when carrying out an industrial operation on the component by recognizing positions of the reference triplet and a point of the light source of the tool calculating the position of the operating points of an operating sequence with reference to the position assumed by the reference triplet and evaluating the position of the tool with respect to the calculated position of the operating points.
Abstract:
A hybrid powertrain unit comprises an engine and a gearbox with a primary shaft connectable to an engine shaft via a clutch and a secondary shaft with an output pinion meshing with a first differential crown wheel. An electric machine is configured to function as an electric motor and generator, having a shaft connected by a transmission to a second differential crown wheel. The transmission, arranged between the electric machine shaft and the second crown wheel includes a first engagement device. The electric machine shaft is connected to the engine shaft by a belt transmission including a belt engaged on a first pulley connected to the electric machine shaft and a second pulley connected to the engine shaft. Between the electric machine shaft and said first pulley is a second engagement device. The engagement devices are arranged coaxially with the electric machine shaft on opposite sides of the electric machine.
Abstract:
Described herein is a gearbox for a motor vehicle including a plurality of forward gear ratios and a reverse gear ratio, the gearbox further including: a control device (configured for controlling the selection and the engagement of said forward gear ratios and of said reverse gear ratio; and a plurality of engagement devices that can be controlled by means of said control device for engaging the forward gear ratios or reverse gear ratio (RM) of the gearbox that are operatively associated to said devices. The gearbox includes a locking device, which is electrically controlled and configured for preventing actuation of the engagement device associated to a predetermined forward gear ratio, said locking device being configured for being actuated above a threshold speed of the motor vehicle on which said gearbox is installed.