Abstract:
A semiconductor devices including non-volatile memories and methods of fabricating the same to improve performance thereof are provided. Generally, the device includes a memory transistor comprising a polysilicon channel region electrically connecting a source region and a drain region formed in a substrate, an oxide-nitride-nitride-oxide (ONNO) stack disposed above the channel region, and a high work function gate electrode formed over a surface of the ONNO stack. In one embodiment the ONNO stack includes a multi-layer charge-trapping region including an oxygen-rich first nitride layer and an oxygen-lean second nitride layer disposed above the first nitride layer. Other embodiments are also disclosed.
Abstract:
An embodiment of a method of integrating a non-volatile memory device into a logic MOS flow is described. Generally, the method includes: forming in a first region of a substrate a channel of a memory device from a semiconducting material overlying a surface of the substrate, the channel connecting a source and a drain of the memory device; forming a charge trapping dielectric stack over the channel adjacent to a plurality of surfaces of the channel, wherein the charge trapping dielectric stack includes a blocking layer on a charge trapping layer over a tunneling layer; and forming a MOS device over a second region of the substrate.
Abstract:
A method for fabricating a nonvolatile charge trap memory device is described. The method includes providing a substrate having a charge-trapping layer disposed thereon. A portion of the charge-trapping layer is then oxidized to form a blocking dielectric layer above the charge-trapping layer by exposing the charge-trapping layer to a radical oxidation process.
Abstract:
A method for fabricating a nonvolatile charge trap memory device is described. The method includes providing a substrate having a charge-trapping layer disposed Thereon. A portion of the charge-trapping layer is then oxidized to form a blocking dielectric layer above the charge-trapping layer by exposing the charge-trapping layer to a radical oxidation process.
Abstract:
A semiconductor device includes a substrate, a first oxide layer formed on the substrate, an oxygen-rich nitride layer formed on the first oxide layer, a second oxide layer formed on the oxygen-rich nitride layer, and an oxygen-poor nitride layer formed on the second oxide layer.
Abstract:
A method of making a semiconductor structure is provided. The method includes forming a dielectric layer using a high density plasma oxidation process. The dielectric layer is on a storage layer and the thickness of the storage layer is reduced during the high density plasma oxidation process.
Abstract:
A method of ONO integration of a non-volatile memory device (e.g. EEPROM, floating gate FLASH and SONOS) into a baseline MOS device (e.g. MOSFET) is described. In an embodiment the bottom two ONO layers are formed prior to forming the channel implants into the MOS device, and the top ONO layer is formed simultaneously with the gate oxide of the MOS device.
Abstract:
A blocking layer of a non-volatile charge trap memory device is formed by oxidizing a portion of a charge trapping layer of the memory device. In one embodiment, the blocking layer is grown by a radical oxidation process at temperature below 500° C. In accordance with one implementation, the radical oxidation process involves flowing hydrogen (H2) and oxygen (O2) gas mixture into a process chamber and exposing the substrate to a plasma. In a preferred embodiment, a high density plasma (HDP) chamber is employed to oxidize a portion of the charge trapping layer. In further embodiments, a portion of a silicon-rich silicon oxynitride charge trapping layer is consumptively oxidized to form the blocking layer and provide an increased memory window relative to oxidation of a nitrogen-rich silicon oxynitride layer.
Abstract:
A blocking layer of a non-volatile charge trap memory device is formed by oxidizing a portion of a charge trapping layer of the memory device. In one embodiment, the blocking layer is grown by a radical oxidation process at temperature below 500° C. In accordance with one implementation, the radical oxidation process involves flowing hydrogen (H2) and oxygen (O2) gas mixture into a process chamber and exposing the substrate to a plasma. In a preferred embodiment, a high density plasma (HDP) chamber is employed to oxidize a portion of the charge trapping layer. In further embodiments, a portion of a silicon-rich silicon oxynitride charge trapping layer is consumptively oxidized to form the blocking layer and provide an increased memory window relative to oxidation of a nitrogen-rich silicon oxynitride layer.
Abstract:
A semiconductor device including an oxide-nitride-oxide (ONO) structure having a multi-layer charge storing layer and methods of forming the same are provided. Generally, the method involves: (i) forming a first oxide layer of the ONO structure; (ii) forming a multi-layer charge storing layer comprising nitride on a surface of the first oxide layer; and (iii) forming a second oxide layer of the ONO structure on a surface of the multi-layer charge storing layer. Preferably, the charge storing layer comprises at least two silicon oxynitride layers having differing stoichiometric compositions of Oxygen, Nitrogen and/or Silicon. More preferably, the ONO structure is part of a silicon-oxide-nitride-oxide-silicon (SONOS) structure and the semiconductor device is a SONOS memory transistor. Other embodiments are also disclosed.