Abstract:
A method for waking up a distant device from a local device, through a transmission medium and distant and local media converters. Initially, at least one of the physical and link layer units of the distant device is off, and its processing layer unit is off or in Low Power mode. The transceiver of the distant media converter is on. When receiving an initial wake-up signal from the local device, the transceiver of the distant media converter generates an electrical wake-up signal converted from the initial wake-up signal. The transceiver of the distant media converter sends the electrical wake-up signal, or derived wake-up information, to the processing layer unit of the distant device, through a transmission line independent of the physical and link layer units of the distant device. When receiving the electrical wake-up signal or the wake-up information, the processing layer unit of the distant device turns on.
Abstract:
A method is provided for transmitting signals on a multi-conductor cable (12) formed from a plurality of conductors (1-7) surrounded by an armor (10), the plurality of conductors having a central conductor (7) surrounded by a first peripheral layer of conductors (1-6) with an even number of conductors symmetrically arranged around the central conductor. The two following transmission modes are carried out simultaneously: a common mode (TX1) that uses the central conductor (7) with a return on the armor (10), for transmitting a first signal (s1); and a differential mode (TX2) between a first path comprising all odd rank conductors (1,3,5) of the peripheral layer and a second path comprising all even rank conductors (2,4,6) of the peripheral layer, for transmitting a second signal (s2).
Abstract:
It is proposed a method for providing synchronization in a data acquisition system including a plurality of acquisition units. A given acquisition unit of the plurality carries out the following steps: receiving a packet from another device of the data acquisition system; extracting a synchronization accuracy information and a reference clock information from the received packet; obtaining a first reference clock as a function of the extracted reference clock information; if the extracted synchronization accuracy information indicates a better synchronization accuracy than a current synchronization accuracy information associated to the given acquisition unit: taking the obtained first reference clock as a selected reference clock and updating the current synchronization accuracy information to indicate a lower synchronization accuracy than the extracted synchronization accuracy information.
Abstract:
A coupling device is provided for a sensor unit having at least one sensor located within a housing. The coupling device includes at least one supporting portion, wherein the supporting portion is configured for maintaining the sensor unit in a stable position, with the coupling device either resting on or being buried into the ground, and at least one rod, arranged in a plane which is essentially perpendicular to a peripheral surface of the supporting portion and linked to the supporting portion. The coupling device further includes a fastener for connecting the sensor unit to the coupling device. The supporting portion maintains the sensor unit in a stable position when resting on the ground, while the rod provides an additional stiffness to the housing.
Abstract:
A method and apparatus are provided for estimating the water speed of a first acoustic node D belonging to a network of acoustic nodes, at least some of the acoustic nodes being arranged along towed acoustic linear antennas (S). The method includes steps of: a) defining a N-dimensional base, the center of which is the first acoustic node and comprising a single axis, when N=1, or N non-collinear axes, when N=2 or N=3, each axis being associated with a base vector extending from the first acoustic node to another acoustic node; and b) estimating an amplitude of the water speed, as a function of: for each given other acoustic node defining the base vector: an acoustic propagation duration of an acoustic signal transmitted from the first acoustic node to the given other acoustic node, and an acoustic propagation duration of an acoustic signal transmitted from the given other acoustic nodes to the first acoustic node; and a value c of the underwater acoustic sound velocity.
Abstract:
A method for managing the speed of at least one first vessel in a seismic survey. The first vessel sails at a current speed and performing a series of shots according to a predefined set of shot points, called preplot. The method includes, during at least a part of said seismic survey, computing an updated speed for the first vessel, using at least a time prediction shift defined as a time difference between at least: a raw time prediction for the first vessel, the raw time prediction being defined by the time to reach a shot point based on the current speed of the first vessel, and a corrected time prediction, for the first vessel, depending on at least one parameter related to at least one vessel of the seismic survey. Any of the raw predictions being computed for a given shot point in the preplot and at least one of the time prediction shift are computed for a given shot point in the preplot.
Abstract:
This invention relates to a data communication system/method for use in a downhole application wherein electrical energy is supplied over a multiple-conductor power cable to a motor assembly of a downhole tool such as an electric submersible pump. A power leg coupling interfaces a surface controller of a downhole instrument to the conductors of the tool's power cable. Uplink communication of telemetry data occurs via current modulation generated by the downhole instrument and interpreted by a surface controller. Downlink communication of downhole instrument data occurs over a different communication scheme supported by the downhole and surface controllers. Downlink communication scheme provides a supply of power to the downhole instrument. Protection of downhole electronics and continuity of communication is ensured in the event of a ground fault on the power cable. Both downlink and uplink communication frequencies are adaptive based on frequencies and voltages present on the power cable.
Abstract:
An electronic unit is constructed having a casing, at least partially flexible, at least partially made of a polymer material. The casing extends along a longitudinal axis (X) between two lateral ends and has a hollow cylindrical core for housing a portion of a core cable of a streamer, and a plurality of walls outwardly extending from the hollow cylindrical core, delimiting spaces configured for housing electronics, and having free ends. One of the walls and the hollow cylindrical core of the casing have a through-slot that extends longitudinally over a total length of the casing from one lateral end to another lateral end. An electronic board has at least one flexible part and configured for at least partially resting on free ends of at least two of the plurality of walls.
Abstract:
An underwater cable deployment system for deploying an ocean bottom cable on the seabed including a cage having a lower frame and an upper frame, which lower frame is adapted to receive the ocean bottom cable and the upper frame is connected to an umbilical cable mounted on a vessel, the upper frame being removably attached to the lower frame, guiding and tensioning means for deploying the ocean bottom cable on the seabed, the lower frame further including a recording unit which is connected to the ocean bottom cable and is adapted to record data detected by at least one sensor unit of the ocean bottom cable and an electrical power unit adapted to provide power to the recording unit and to the ocean bottom cable.
Abstract:
Method and apparatus for mitigating vibrations in a device towed in water. The apparatus includes one or more tuned elastic sections having a complex spring rate and adapted to attenuate vibrations in a specified frequency range; and a head end coupler adapted to couple the apparatus for vibration mitigation to a component of an electro-mechanical cable or a tow assembly. One of the one or more tuned elastic sections is coupled to the head end coupler with a high impedance material interface.