Abstract:
In a transistor and a method of manufacturing the same, the transistor includes a channel layer arranged on a substrate, a source electrode and a drain electrode formed on the substrate so as to contact respective ends of the channel layer, a gate insulating layer surrounding the channel layer between the source electrode and the drain electrode, and a gate electrode surrounding the gate insulating layer.
Abstract:
A mask used for a Lithographie, Galvanofomung, and Abformung (LIGA) process, a method for manufacturing the mask, and a method for manufacturing a microstructure using a LIGA process. The method for manufacturing the microstructure using the LIGA process contemplates forming a substrate for the microstructure, a plurality of photosensitive layers, each photosensitive layer having a plating hole and an aligning pinhole, and an aligning pin capable of being inserted into the aligning pinhole, with the aligning pinholes of the photosensitive layers being formed in corresponding positions, and repeating a process of stacking the photosensitive layer on the substrate for the microstructure and a process of forming a plating layer by plating the plating hole of the stacked photosensitive layer with a metal for a number of times corresponding to the number of the photosensitive layers, and when the photosensitive layers are stacked on the substrate for the structure, the photosensitive layers being aligned with one another by inserting the aligning pin into the aligning pinholes of all the photosensitive layers stacked on the substrate for the microstructure to penetrate all the photosensitive layers.
Abstract:
Provided is an anode panel of a field emission type backlight unit. The anode panel includes a substrate, an anode formed on a lower surface of the substrate, a phosphor layer coated on a lower surface of the anode and a liquid pack disposed on an upper surface of the substrate, said liquid pack having a transparent cover having cylindrical lens type curved portions and transparent liquid filling in the curved portions.
Abstract:
A transistor includes: a semiconductor substrate; a channel region arranged on the semiconductor substrate; a source and a drain respectively arranged on either side of the channel region; and a conductive nano tube gate arranged on the semiconductor substrate to transverse the channel region between the source and the drain. Its method of manufacture includes: arranging a conductive nano tube on a surface of a semiconductor substrate; defining source and drain regions having predetermined sizes and traversing the nano tube; forming a metal layer on the source and drain regions; removing a portion of the metal layer formed on the nano tube to respectively form source and drain electrodes separated from the metal layer on either side of the nano tube; and doping a channel region below the nano tube arranged between the source and drain electrodes by ion-implanting.
Abstract:
A field emission type backlight unit and a method of manufacturing the same. The field emission type backlight unit includes a lower substrate, a plurality of cathode electrodes formed on the lower substrate, a plurality of insulating layers formed in a line shape on the lower substrate and the cathode electrodes, a plurality of gate electrodes formed on the insulating layers, and at least one emitter formed of an electron emission material on each cathode electrode between the insulating layers.
Abstract:
A field emission display device and a field emission type backlight device having a sealing structure for a vacuum exhaust are provided. The field emission display device is constructed with a cathode substrate and an anode substrate attached to each other and facing each other and a vacuum-exhausted panel space formed therebetween to generated a visual image. Also, the field emission display device is constructed with a sealing member disposed along edges of the cathode substrate and the anode substrate to seal the panel space. At least one inlet exposed to the panel space and an exhaust passage through which the inlet communicates with an outside of the field emission display device are formed in the sealing member. The field emission display device and the field emission type backlight device according to the present invention has a reduced number of manufacturing processes and is suitable for a compact, slim and lightweight design, and a large screen by having the sealing structure for the vacuum exhaust.
Abstract:
A nanowire electronmechanical device with an improved structure and a method of fabricating the same prevent burning of two nanowires which are switched due to contact with each other while providing stable on-off switching characteristics. The nanowire electromechanical device comprises: an insulating substrate; first and third electrodes spaced apart from each other on the insulating substrate, wherein a negative voltage and a positive voltage, varying within a predetermined range, are applied to the first and third electrodes, respectively; a second electrode interposed between the first and third electrodes, a constant positive voltage, lower than the voltage applied to the third electrode, being applied to the second electrode; a first nanowire vertically grown on the first electrode and charged with a negative charge; a second nanowire vertically grown on the second electrode and charged with a positive charge; and a third nanowire vertically grown on the third electrode and charged with an amount of positive charge corresponding to the magnitude of the varying voltage applied to the third electrode.
Abstract:
A carbon nanotube emitter and its fabrication method, a Field Emission Device (FED) using the carbon nanotube emitter and its fabrication method include a carbon nanotube emitter having a plurality of first carbon nanotubes arranged on a substrate and in parallel with the substrate, and a plurality of the second carbon nanotubes arranged on a surface of the first carbon nanotubes.
Abstract:
A carbon nanotube manufacturing method is provided. In the carbon nanotube manufacturing method, carbon nanoparticles are dispersed in a strong acid solution and heated at a predetermined temperature under reflux to form carbon nanotubes from the carbon nanoparticles. The carbon nanotubes can be simply produced on a mass-scale at low costs by using the strong acid solution.
Abstract:
A particulate structure containing a carbon nanotube thus exhibiting improved electron-transferring property, a semiconductor electrode for a photoelectrochemical cell containing a carbon nanotube thus exhibiting improved electron-transferring property, an electrolytic solution for a photoelectrochemical cell containing a carbon nanotube thus exhibiting improved oxidation-reduction property, a reduction electrode for a photoelectrochemical cell containing a carbon nanotube thus exhibiting improved reduction property; and a photoelectrochemical cell applying at least one aspect above.