Abstract:
An electric machine is provided that has a rotor assembly having a rotor core configured to support permanent magnets spaced around the rotor core to define a number of rotor poles. The rotor core has multiple rotor slots arranged as multiple barrier layers at each of the rotor poles. The multiple barrier layers are positioned adjacent one another between an inner periphery of the rotor core and an outer periphery of the rotor core and include a first barrier layer nearest the inner periphery. Permanent magnets are disposed in at least the first barrier layer. A stator assembly surrounds the rotor assembly. The electric machine is configured to function as a motor in a motoring mode and as a generator in a generating mode. The electric machine is configured with predetermined operating parameters selected for optimizing operation in the motoring mode and/or the generating mode.
Abstract:
A solenoid assembly includes a solenoid actuator having a core. A coil is configured to be wound at least partially around the core such that a magnetic flux (ϕ) is generated when an electric current flows through the coil. An armature is configured to be movable based on the magnetic flux (ϕ). A controller has a processor and tangible, non-transitory memory on which is recorded instructions for controlling the solenoid assembly. The controller is configured to obtain a plurality of model matrices, a coil current (i1) and an eddy current (i2). The magnetic flux (ϕ) is obtained based at least partially on a third model matrix (C0), the coil current (i1) and the eddy current (i2). Operation of the solenoid actuator is controlled based at least partially on the magnetic flux (ϕ). In one example, the solenoid actuator is an injector.
Abstract:
An electric machine is provided for a dual voltage power system having a first energy storage system (HV-ESS) with a first nominal voltage and second energy storage system (LV-ESS with a second nominal voltage). The electric machine includes a rotor assembly having a rotor core configured to support permanent magnets spaced around the rotor core to define a number of rotor poles. The rotor core has multiple rotor slots arranged as at least one barrier layer at each of the rotor poles. Permanent magnets are disposed in the at least one barrier layer. A stator assembly surrounds the rotor assembly. The electric machine is configured to be operatively connected with the HV-ESS. The electric machines has at least one of a predetermined efficiency at rated power, a predetermined power density, a predetermined torque density, a predetermined peak power range, or a predetermined maximum speed of the electric machine.
Abstract:
A hybrid vehicle propulsion includes an engine and a first electric machine, where each is configured to selectively provide torque to propel the vehicle. The propulsion system also includes a second electric machine coupled to the engine to provide torque to start the engine from an inactive state. A high-voltage power source is configured to power both of the first electric machine and the second electric machine over a high-voltage bus. The propulsion system further includes a controller programmed to deactivate the engine and propel the vehicle using the first electric machine in response to the vehicle being driven at a steady-state speed for a predetermined duration of time. The controller is also programmed to restart the engine using the second electric machine powered by the high-voltage power source.
Abstract:
A rotor of a permanent magnet synchronous machine includes a rotor core structure. A first set of apertures are formed in a first radial layer of the rotor core structure having a first set of permanent magnets disposed therein forming respective poles. A second set of apertures formed in a second radial layer of the rotor core structure of each pole. A third set of apertures is formed in a third radial layer of the rotor core structure. A second set of permanent magnets is inserted within the third set of apertures. A plurality of bridges each extends across a respective side of each of the third set of apertures in the third radial layer. The plurality of bridges provides structural support of the rotor core structure when operating. The plurality of bridges are integrally formed as single-piece laminations.
Abstract:
An electric machine is provided for a dual voltage power system having a first energy storage system (HV-ESS) with a first nominal voltage and second energy storage system (LV-ESS with a second nominal voltage). The electric machine includes a rotor assembly having a rotor core configured to support permanent magnets spaced around the rotor core to define a number of rotor poles. The rotor core has multiple rotor slots arranged as at least one barrier layer at each of the rotor poles. Permanent magnets are disposed in the at least one barrier layer. A stator assembly surrounds the rotor assembly. The electric machine is configured to be operatively connected with the HV-ESS. The electric machines has at least one of a predetermined efficiency at rated power, a predetermined power density, a predetermined torque density, a predetermined peak power range, or a predetermined maximum speed of the electric machine.
Abstract:
An electric machine includes a housing, a rotor rotatably mounted to the housing, and a stator mounted to the housing about the rotor. The stator includes a stator body formed from a plurality of laminations. The plurality of laminations include an outer annular surface defining a radius, an inner annular surface spaced from the rotor, and a plurality of radially inwardly extending stator teeth spaced one from another by plurality of gaps. Each of the plurality of gaps extend along the radius and include an opening exposed at the inner annular surface. The opening has a first side portion and a second side portion each extending at an angle relative to the radius.
Abstract:
The present disclosure discloses a vehicle propulsion system. The vehicle propulsion system includes a first electric machine including a first set of machine windings that are configured to cause a rotor to rotate about an axis to selectively drive a transmission during a first vehicle operating state and a second electric machine including a second set of machine windings that are configured to cause a rotor to rotate about an axis selectively drive the transmission during at least one of the first vehicle operating state or a second vehicle operating state. The second vehicle operating state different from the first operating state, and a number of series turns per phase for the first set of machine windings is different from a number of series turns per phase for the second set of machine windings.
Abstract:
A stator assembly for an electric machine includes stator teeth connected to a stator yoke to form a stator core. Adjacent teeth define a stator slot. Stator windings are disposed within the slot. A molding material fills the slot around the windings, providing a desired thermoelectrical performance level at different slot regions, including electrical insulation, thermal conductivity, and/or electrostatic shielding levels. A method insulates the stator assembly by inserting a molding tool(s) into the slot to define a void volume, filling the void volume with the dielectric molding material, and curing the dielectric molding material to form a slot liner layer adjacent to the tooth walls. A slot opening between adjacent teeth is filled with an electrically-conductive resin to form an electrostatic shielding layer. An electrical system includes an AC voltage bus connected to a power inverter module and to the electric machine having the above-described stator assembly.
Abstract:
An electric propulsion system includes a rotary electric machine having an output member, a rechargeable energy storage system (“RESS”) connected to the electric machine, a user interface device, and a controller. The RESS includes multiple battery modules and a switching circuit, the latter being configured, in response to electronic switching control signals, to connect the battery modules in a parallel-connected (“P-connected”) configuration or a series-connected (“S-connected”) configuration, as a selected battery configuration. The user interface device receives an operator-requested drive mode signal indicative of a desired drive mode of the electric propulsion system. The controller, which is programmed with mode-specific electrical losses associated with the desired drive mode, establishes the selected battery configuration in response to the drive mode signal, and presents a drive mode recommendation via the user interface device when the losses associated with the desired drive mode exceed a calibrated loss threshold.