Abstract:
Apparatus, systems, methods, and related computer program products for managing demand-response programs and events. The systems disclosed include an energy management system in operation with an intelligent, network-connected thermostat located at a structure. The thermostat controls an HVAC system to cool the structure using a demand response event implementation profile over the demand response event period. The thermostat can also receive a requested change to the setpoint temperatures defined by the demand response event implementation profile and access a determination of an impact on energy shifting that would result if the requested change is incorporated into the demand response event implementation profile. This determination can be communicated to the energy consumer.
Abstract:
Various arrangements for installing or configuring an electronic device are presented. The device may determine which wire connectors of a set of one or more wire connectors have a wire attached. A user inquiry may be output based on the electronic device identifying the wire connector with which the wire has been connected. The electronic device may be operated based on the response to the user inquiry and the electronic device identifying the wire connector with which the wire has been connected.
Abstract:
Systems and methods are provided for efficiently controlling energy-consuming systems, such as heating, ventilation, or air conditioning (HVAC) systems. For example, an electronic device used to control an HVAC system may encourage a user to select energy-efficient temperature setpoints. Based on the selected temperature setpoints, the electronic device may generate or modify a schedule of temperature setpoints to control the HVAC system.
Abstract:
According to one embodiment, a smart home device includes a front casing that is coupleable with a back plate to define a housing having an interior region within which one or more components of the smart home device are contained. The smart home device also includes an occupancy sensor that is disposed within the interior region of the smart home device and a button cap component that is positioned axially in front of the occupancy sensor. The button cap component is pressable by a user to actuate a switch that is disposed axially behind the button cap component. The smart home device further includes a lighting component that is positioned axially behind the button cap component. The lighting component is configured to disperse light circumferentially around the button cap component so as to provide a visual halo effect around the button cap component.
Abstract:
A thermostat and related methods is provided for controlling an HVAC system. The thermostat includes wiring terminals adapted and configured to make an electrical connection with an HVAC system wires such as common, heating and cooling control and return wires. The making of the connection with a common wire actuates switching open a loop of an electrical circuit used for power harvesting. According to some embodiments, the wiring terminal includes actuation of a moveable part of the terminal so as to accommodate the common wire that in turn actuates the switching open the power harvesting loop. More than one other loop can be switched. According to some embodiments, the wiring terminal can be used to automatically connect and/or disconnect Rc and Rh circuits when one or both Rc and Rh wires are present. According to some embodiments, the wiring terminal can be used for electronically sensing the presence of the HVAC system wire.
Abstract:
Systems and methods are described for interactively and graphically displaying performance information to a user of an HVAC system controlled by a self-programming network-connected thermostat. The information is made on a remote display device such as a smartphone, tablet computer or other computer, and includes a graphical daily summary each of several days. In response to a user selection of a day, detailed performance information is graphically displayed that can include an indication of HVAC activity on a timeline, the number of hours of HVAC activity, as well as one or more symbols on a timeline indicating setpoint changes, and when a setpoint was changed due to non-occupancy.
Abstract:
According to one embodiment, a hazard detector may include a back plate and a front casing coupled to the back plate to define a housing having an interior region and an opening through which air flows into the interior region. A circuit board may be coupled to the back plate and have a plurality of components mounted thereon. A smoke chamber may be mid-mounted on the circuit board, mid-mounting being characterized in the smoke chamber extending through a hole formed in the circuit board such that a top surface of the smoke chamber is positioned above a top surface of the circuit board and a bottom surface of the smoke chamber is positioned below a bottom surface of the circuit board, whereby an interior region of the smoke chamber is accessible to smoke from both the top and bottom surfaces of the circuit board.
Abstract:
A particular smart hazard detector may itself function as a guide during a process of installation of the same at an installation location. Additionally, the installation location of the particular smart hazard detector may play a central role in how various settings of the smart hazard detector are defined and adjusted over time.
Abstract:
A path light that utilizes an ambient light sensor to determine the lighting conditions may experience feedback from its light source if it determines that the lighting conditions are appropriate to illuminate the path light's light source. The path light, as disclosed herein, may compute an offset value to ascertain the amount of feedback from the light source. Upon learning the offset value, the path light may subtract the offset value from a detected amount of light to determine whether the lighting conditions of its surroundings still meet a threshold level of darkness for the path light to illuminate.
Abstract:
A user-friendly programmable thermostat is described that includes a circular body having a large central display surrounded by a ring that can be rotated an pressed inward by a user so as to receive user input in a simple elegant fashion. Different colors can be displayed to the user to indicate currently active HVAC functions, and different shades of colors can be displayed to a user to indicate an estimated amount of time and/or energy for reaching a target temperature. The thermostat is wall mountable and is made up of a head unit removeably mounted to a backplate. A locking mechanism can be provided so as to increase security against unauthorized removal of the head unit. The backplate can be adapted to be mounted on a wall so as to be level, for example by including a bubble level on the backplate. One or more vents are preferably located on the sides of the body, such as in a gap beneath the translatably mounted ring, and/or in a gap between the head unit and the backplate. The target temperature for the device can be altered in response to sensing rotation of the rotating ring, and the programmed schedule can be displayed to and altered by the user in response to sensing rotation of the ring and the translational movement of the ring. Historical information such as temperature and cost information can be displayed to a user in response to sensing rotating of the rotating ring. One or more device settings can be displayed to and edited by a user in response to sensing rotating of the rotating member and the translational movement. According to some embodiments, text characters can be entered by the user.