Abstract:
Apparatus, systems, methods, and related computer program products for managing demand-response programs and events. The systems disclosed include an energy management system in operation with an intelligent, network-connected thermostat located at a structure. The thermostat acquires various information about the residence, such as a thermal retention characteristic of the residence, a capacity of an HVAC associated with the residence to cool or heat the residence, a likelihood of the residence being occupied, a forecasted weather, a real-time weather, and a real-time occupancy. Such information is used to manage the energy consumption of the structure during a demand-response event.
Abstract:
System for displaying hazard events and adjusting hazard detector settings on a mobile device includes a user interface executed on the mobile device, a hazard detector, and a computer server system communicatively coupled to the mobile device and hazard detector. The hazard detector generates hazard events indicating detection of smoke or carbon monoxide. The hazard events are transmitted to the computer server system and then to the mobile device. User interface displays the hazard events in an event group. User interface receives an adjusted value for a setting of the hazard detector and transmits the adjusted value to the computer server system. The computer server system determines that the adjusted value corresponds to the hazard detector, receives a check-in event from the hazard detector, and transmits the adjusted value to the hazard detector in response to receiving the check-in event. The hazard detector applies the adjusted value to the setting.
Abstract:
Embodiments provided herein relate to monitoring and reporting household activities. In one embodiment, a method includes: monitoring, via a smart device, one or more activities associated with: a household; analyzing, via the smart device, a processor, or both, at least one characteristic of the one or more activities to discern information about the household; and reporting, via the device, the discerned information.
Abstract:
Embodiments provided herein relate to controlling a household via one or more household policies. In one embodiment, a method includes: receiving, at a processor, a household policy for a household, the household policy related to attaining an end goal; determining, via interpretation of the household policy by the processor, an end goal state of the household policy; incrementally modifying a control trigger threshold of a conditionally controlled smart device over time until the end goal state is reached; wherein the control trigger threshold indicates when the conditionally controlled smart device should be controlled to implement a particular function.
Abstract:
This disclosure relates to systems and methods for verifying that a device is using its Wi-Fi circuitry in compliance with the regulations governing the location in which the device is located. Embodiments discussed herein can verify the location using location verification tools that evaluate locally ascertainable factors that contribute to a probability determination of the device's location. Locally ascertainable factors include information that be gleaned from the surroundings of the device. The surroundings or environment in which the device resides may provide clues as to whether the device is located in a particular regulatory domain.
Abstract:
Ambient amount of a hazardous condition may be monitored. A mode may be set to a state indicative of the hazardous condition being present in the ambient environment. It may then be determined that the amount of the hazard in the ambient environment has dropped below an alarm criterion. A time period may then be tracked during which the amount of the hazardous condition present in the ambient environment of the hazard detector has remained below the alarm criterion. It may be determined that the time period has reached at least a threshold duration, during such time period the amount of the hazardous condition present in the ambient environment of the hazard detector having remained below the alarm criterion. An indication of the hazardous condition easing may be output in response to the time period being at least the threshold duration.
Abstract:
Systems and methods for providing registration at a remote site that may include, for example, a monitoring module that may communicate with a remote site. A registration protocol may be used by the monitoring module and the remote site in generating the messages communicated during the registration process. The monitoring module may gather and generate various identification information to be included in the registration protocol messages. The registration information provided by the monitoring module may be stored at the remote site in a database server having a database. A confirmation message may be communicated from the remote site to the monitoring module that may either acknowledge successful registration or report that an error occurred during the registration process.
Abstract:
An occupancy sensing electronic thermostat is described that includes a thermostat body, an electronic display that is viewable by a user in front of the thermostat, a passive infrared sensor for measuring infrared energy and an infrared energy directing element formed integrally with a front surface of the thermostat body. The passive infrared sensor may be positioned behind the infrared energy directing element such that infrared energy is directed thereonto by the infrared energy directing element. The thermostat may also include a temperature sensor and a microprocessor programmed to detect occupancy based on measurements from the passive infrared sensor.
Abstract:
A system including a thermostat user interface for a network-connected thermostat is described. The system includes a thermostat including a frustum-shaped shell body having a circular cross-section and a circular rotatable ring, which is user rotatable for adjusting a setting of the thermostat. The system further includes a client application that is operable on a touch-screen device separate from the thermostat, that displays a graphical representation of a circular dial, that detects a user-input motion proximate the graphical representation, that determines a user-selected setpoint temperature value based on the user-input motion, that displays a numerical representation of the user-selected setpoint temperature value, and that wirelessly transmits to the thermostat data representative of the user-selected setpoint temperature.
Abstract:
Devices and methods are provided for generating and/or displaying a graphical user interface used to control an energy-consuming system, such as a heating, ventilation, or air conditioning (HVAC) system. Such an electronic device may include, for example, a processor that generates the graphical user interface and an electronic display that displays the graphical user interface. The graphical user interface may include a menu formed from discrete display elements that, owing to the way in which the discrete display elements are shifted into and out of view on the screen, appear to be spatially related to one another.