摘要:
A electrostatic adhesion tester for thin film conductors. In one embodiment, a device is provided for testing the adhesion strength of a thin film conductor that has been formed upon a substrate. The device includes an adhesion tester that is primarily comprised of a conducting portion. The conducting portion is applied to the thin film conductor so that it does not physically contact the thin film conductor, but leaves a small space there between. A power supply may further be provided for coupling to either the adhesion tester, the thin film conductor, or both in order to create a potential difference between the conducting portion and the thin film conductor. The potential difference creates an electric field between the conducting portion and the thin film conductor that induces stress in the thin film conductor. A measuring device may also be provided for coupling to the adhesion tester and the thin film conductor in order to measure an electrical parameter of the electric field, which is indicative of the adhesion strength.
摘要:
The present invention relates to a heterojunction tunneling effect transistor (TFET), which comprises spaced apart source and drain regions with a channel region located therebetween and a gate stack located over the channel region. The drain region comprises a first semiconductor material and is doped with a first dopant species of a first conductivity type. The source region comprises a second, different semiconductor material and is doped with a second dopant species of a second, different conductivity type. The gate stack comprises at least a gate dielectric and a gate conductor. When the heterojunction TFET is an n-channel TFET, the drain region comprises n-doped silicon, while the source region comprises p-doped silicon germanium. When the heterojunction TFET is a p-channel TFET, the drain region comprises p-doped silicon, while the source region comprises n-doped silicon carbide.
摘要:
Contact with a floating body of an FET in SOI may be formed in a portion of one of the two diffusions of the FET, wherein the portion of the diffusion (such as N−, for an NFET) which is “sacrificed” for making the contact is a portion of the diffusion which is not immediately adjacent (or under) the gate. This works well with linked body FETs, wherein the diffusion does not extend all the way to BOX, hence the linked body (such as P−) extends under the diffusion where the contact is being made. An example showing making contact for ground to two NFETs (PG and PD) of a 6T SRAM cell is shown.
摘要:
Electrical fuses and resistors having a sublithographic lateral or vertical dimension are provided. A conductive structure comprising a conductor or a semiconductor is formed on a semiconductor substrate. At least one insulator layer is formed on the conductive structure. A recessed area is formed in the at least one insulator layer. Self-assembling block copolymers are applied into the recessed area and annealed to form a fist set of polymer blocks and a second set of polymer blocks. The first set of polymer blocks are etched selective to the second set and the at least one insulator layer. Features having sublithographic dimensions are formed in the at least one insulator layer and/or the conductive structure. Various semiconductor structures having sublithographic dimensions are formed including electrical fuses and resistors.
摘要:
The present invention provides an interconnect structure (of the single or dual damascene type) and a method of forming the same, in which a dense (i.e., non-porous) dielectric spacer is present on the sidewalls of a dielectric material. More specifically, the inventive structure includes a dielectric material having a conductive material embedded within at least one opening in the dielectric material, wherein the conductive material is laterally spaced apart from the dielectric material by a diffusion barrier, a dense dielectric spacer and, optionally, an air gap. The presence of the dense dielectric spacer results in a hybrid interconnect structure that has improved reliability and performance as compared with existing prior art interconnect structures which do not include such dense dielectric spacers. Moreover, the inventive hybrid interconnect structure provides for better process control which leads to the potential for high volume manufacturing.
摘要:
The present invention relates to a semiconductor device that comprises at least one field effect transistor (FET) containing a source region, a drain region, a channel region, a gate dielectric layer, a gate electrode, and one or more gate sidewall spacers. The gate electrode of such an FET contains an intrinsically stressed gate metal silicide layer, which is laterally confined by one or more gate sidewall spacers and is arranged and constructed for creating stress in the channel region of the FET. Preferably, the semiconductor device comprises at least one p-channel FET, and more preferably, the p-channel FET has a gate electrode with an intrinsically stressed gate metal silicide layer that is laterally confined by one or more gate sidewall spacers and is arranged and constructed for creating compressive stress in the p-channel of the FET.
摘要:
The present invention relates to a heterojunction tunneling effect transistor (TFET), which comprises spaced apart source and drain regions with a channel region located therebetween and a gate stack located over the channel region. The drain region comprises a first semiconductor material and is doped with a first dopant species of a first conductivity type. The source region comprises a second, different semiconductor material and is doped with a second dopant species of a second, different conductivity type. The gate stack comprises at least a gate dielectric and a gate conductor. When the heterojunction TFET is an n-channel TFET, the drain region comprises n-doped silicon, while the source region comprises p-doped silicon germanium. When the heterojunction TFET is a p-channel TFET, the drain region comprises p-doped silicon, while the source region comprises n-doped silicon carbide.
摘要:
Disclosed are embodiments of an improved high aspect ratio electroplated metal structure (e.g., a copper or copper alloy interconnect, such as a back end of the line (BEOL) or middle of the line (MOL) contact) in which the electroplated metal fill material is free from seams and/or voids. Also, disclosed are embodiments of a method of forming such an electroplated metal structure by lining a high aspect ratio opening (e.g., a high aspect ratio via or trench) with a metal-plating seed layer and, then, forming a protective layer over the portion of the metal-plating seed layer adjacent to the opening sidewalls so that subsequent electroplating occurs only from the bottom surface of the opening up.
摘要:
A method for fabricating a hybrid orientation substrate provides for: (1) a horizontal epitaxial augmentation of a masked surface semiconductor layer that leaves exposed a portion of a base semiconductor substrate; and (2) a vertical epitaxial augmentation of the exposed portion of the base semiconductor substrate. The resulting surface semiconductor layer and epitaxial surface semiconductor layer adjoin with an interface that is not perpendicular to the base semiconductor substrate. The method also includes implanting through the surface semiconductor layer and the epitaxial surface semiconductor layer a dielectric forming ion to provide a buried dielectric layer that separates the surface semiconductor layer and the epitaxial surface semiconductor layer from the base semiconductor substrate.
摘要:
The present invention provides an improved CMOS diode structure with dual gate conductors. Specifically, a substrate comprising a first n-doped region and a second p-doped region is formed. A third region of either n-type or p-type conductivity is located between the first and second regions. A first gate conductor of n-type conductivity and a second gate conductor of p-type conductivity are located over the substrate and adjacent to the first and second regions, respectively. Further, the second gate conductor is spaced apart and isolated from the first gate conductor by a dielectric isolation structure. An accumulation region with an underlying depletion region can be formed in such a diode structure between the third region and the second or the first region, and such an accumulation region preferably has a width that is positively correlated with that of the second or the first gate conductor.