摘要:
Methods and systems for operating a double-base bidirectional power bipolar transistor. Two timing phases are used to transition into turn-off: one where each base is shorted to its nearest emitter/collector region, and a second one where negative drive is applied to the emitter-side base to reduce the minority carrier population in the bulk substrate. A diode prevents reverse turn-on while negative base drive is being applied.
摘要:
The present application teaches, inter alia, methods and circuits for operating a B-TRAN (double-base bidirectional bipolar junction transistor). Exemplary base drive circuits provide high-impedance drive to the base contact region on the side of the device instantaneously operating as the collector. (The B TRAN is controlled by applied voltage rather than applied current.) Current signals operate preferred implementations of drive circuits to provide diode-mode turn-on and pre-turnoff operation, as well as a hard ON state with low voltage drop (the “transistor-ON” state). In some preferred embodiments, self-synchronizing rectifier circuits provide adjustable low voltage for gate drive circuits. In some preferred embodiments, the base drive voltage used to drive the c-base region (on the collector side) is varied while base current at that terminal is monitored, so no more base current than necessary is applied. This solves the difficult challenge of optimizing base drive in a B-TRAN.
摘要:
The present application teaches, inter alia, methods and circuits for operating B-TRANs (double-base bidirectional bipolar junction transistors). Base drive circuits provide high-impedance drive to the base contact region on whichever side of the device is (instantaneously) operating as the collector. (B-TRANs, unlike other bipolar junction transistors, are controlled by applied voltage, not applied current.) Control signals operate preferred drive circuits, providing diode-mode turn-on and pre-turnoff operation, and a hard ON state with a low voltage drop (the “transistor-ON” state). In some (not necessarily all) preferred embodiments, a self-synchronizing rectifier circuit provides an adjustable low voltage for the gate drive circuit. Also, in some preferred embodiments, the base drive voltage used to drive the c-base region (on the collector side) is varied while monitoring the base current at that terminal, so that no more base current than necessary is applied. This solves the difficult challenge of optimizing base drive in B-TRANs.
摘要:
Methods, systems, circuits, and devices for power-packet-switching power converters using bidirectional bipolar transistors (BTRANs) for switching. Four-terminal three-layer BTRANs provide substantially identical operation in either direction with forward voltages of less than a diode drop. BTRANs are fully symmetric merged double-base bidirectional bipolar opposite-faced devices which operate under conditions of high non-equilibrium carrier concentration, and which can have surprising synergies when used as bidirectional switches for power-packet-switching power converters. BTRANs are driven into a state of high carrier concentration, making the on-state voltage drop very low.
摘要:
The present application teaches, among other innovations, methods and circuits for operating a B-TRAN (double-base bidirectional bipolar junction transistor). A base drive circuit is described which provides high-impedance drive to the base contact region on whichever side of the device is operating as the collector (at a given moment). (The B-TRAN, unlike other bipolar junction transistors, is controlled by applied voltage rather than applied current.) The preferred implementation of the drive circuit is operated by control signals to provide diode-mode turn-on and pre-turnoff operation, as well as a hard ON state with a low voltage drop (the “transistor-ON” state). In some but not necessarily all preferred embodiments, an adjustable low voltage for the gate drive circuit is provided by a self-synchronizing rectifier circuit. Also, in some but not necessarily all preferred embodiments, the base drive voltage used to drive the c-base region (on the collector side) is varied while the base current at that terminal is monitored, so that no more base current than necessary is applied. This solves the difficult challenge of optimizing base drive in a B-TRAN.
摘要:
Methods and systems for determining maximum power points in photovoltaic inverters. The present application describes unique PV converter topologies including algorithms embedded in controllers. The algorithms can be a variable step size binary search to adjust the input conductance in order to find the conductance that will produce the maximum power out of a PV array. Due to these special topologies, the PV inverter will often not experience sudden shutoffs when typical low voltage cut-off limit is reached since a low-current cut-off limit is also set.
摘要:
Methods, systems, circuits, and devices for power-packet-switching power converters using bidirectional bipolar transistors (BTRANs) for switching. Four-terminal three-layer BTRANs provide substantially identical operation in either direction with forward voltages of less than a diode drop. BTRANs are fully symmetric merged double-base bidirectional bipolar opposite-faced devices which operate under conditions of high non-equilibrium carrier concentration, and which can have surprising synergies when used as bidirectional switches for power-packet-switching power converters. BTRANs are driven into a state of high carrier concentration, making the on-state voltage drop very low.
摘要:
Power is inverted using double-base-contact bidirectional bipolar transistors in a three-level-inverter topology. The transistors not only switch to synthesize a PWM approximation of the desired AC waveform, but also have transient phases of diode conduction before each full turn-on or turn-off.
摘要:
Methods and systems for active charge control diodes with improved reverse recovery characteristics. An extra control terminal is added on the side of a diode nearest to its p-n junction. The control terminal connects to a control region which extends from the drift region to the cathode surface and which is most preferably separated from the cathode region by an insulated trench. During turn-off, the control terminal is most preferably driven negative relative to the cathode just before reversing the polarity of the applied external voltage.
摘要:
Methods and systems for power conversion. An energy storage capacitor is contained within an H-bridge subcircuit which allows the capacitor to be connected to the link inductor of a Universal Power Converter with reversible polarity. This provides a “pseudo-phase” drive capability which expands the capabilities of the converter to compensate for zero-crossings in a single-phase power supply. Conversion between, e.g., single phase and three phase power is enabled, in either direction, without sacrificing workload performance.