摘要:
A wipe containing a fibrous web on which is coated an antimicrobial composition is provided. The composition includes a botanical oil derived from a plant (e.g., thymol, carvacrol, etc.). Because the oil is volatile and tends to evaporate and lose efficacy prior to use, a protein is also employed to enhance the composition's long term stability and antimicrobial efficacy. The protein tends to form a substantially continuous film when coated onto the fibrous web. Because such proteins are typically stiff and brittle, a continuous film would restrict the ability of the fibers to move and bend, reducing web flexibility and drape. Thus, it is typically desired that the antimicrobial composition form a discontinuous coating on the web. In this regard, the present inventors have surprisingly discovered that the addition of an organopolysiloxane can help achieve a discontinuous coating without adversely impacting the ability of the protein to stabilize the oil.
摘要:
A method for forming a composition that includes mixing an antimicrobially active botanical oil (e.g., thymol, carvacrol, etc.) and a modified starch polymer within a melt blending device (e.g., extruder) is provided. Unlike the problems associated with proteins, the use of starch polymers allows for a greater degree of flexibility in the processing conditions and is still able to achieve good properties in the resulting composition. The present inventors have also discovered that a plasticizer may be employed to facilitate melt processing of the starch, as well as to enhance the ability of the botanical oil to flow into the internal structure of the starch where it can be retained in a stable manner. The composition is also typically generally free of solvents. In this manner, the starch will not generally disperse before use and prematurely release the botanical oil. Due to the water sensitivity of the modified starch, however, it may be subsequently dispersed by moisture when it is desired to release the botanical oil.
摘要:
A film that is both biodegradable and flushable, and yet can still act as a barrier to water or other fluids during use, is provided. More particularly, the film contains a water-dispersible core layer that helps the film to lose its integrity after being flushed, as well as a water-barrier skin layer that helps maintain the integrity of the film during use. The nature and relative concentration of the components in the water-barrier layer are selectively controlled to achieve a combination of different functions. That is, the majority of the polymers employed in the water-barrier layer are biodegradable polymers that can be degraded by microorganisms while in an aqueous environment (e.g., septic tank, water treatment facility, etc.). To even further enhance the overall renewability of the layer, a relatively high amount of the biodegradable polymers are starch polymers, which are also renewable. The starch polymers can also minimize the degree of stickiness in the film, which can sometimes result from certain types of synthetic polymers. Even at a high starch content, the present inventors have discovered that films may still be readily formed by using synthetic biodegradable polyesters in combination with the starch to facilitate melt processing.
摘要:
A molded part that is formed from a thermoplastic composition that contains a polylactic acid, propylene/α-olefin copolymer, and a polyolefin compatibilizer is provided. The propylene/α-olefin copolymer can be dispersed as discrete physical domains within a continuous matrix of the polylactic acid. Without intending to be limited by theory, it is believed that the discrete domains can help resist the expansion of the composition during a molding operation, which minimizes the degree of expansion experienced by the composition during molding in comparison to conventional polylactic acid compositions.
摘要:
A film that is biodegradable and water-sensitive (e.g., water-soluble, water-dispersible, etc.) in that it loses its integrity over time in the presence of water is provided. More specifically, the film contains a combination of a biodegradable polyester and a water-sensitive thermoplastic starch. The desired water-sensitive attributes of film may be achieved in the present invention by selectively controlling a variety of aspects of the film construction, such as the nature of the components employed, the relative amount of each component, the manner in which the film is formed, and so forth.
摘要:
Films made from a thermoplastic cellulose and microbially-derived, renewable and biodegradable aliphatic polyester such as polyhydroxyalkanoates are disclosed. The films, made from two relatively brittle materials exhibit more ductility and strength than the materials from which the film is made. The film may be incorporated into absorbent personal care product including but not limited to training pants, diaper, bandages, and bed pads.
摘要:
A molded part that is formed from a thermoplastic composition that contains a polylactic acid, propylene/α-olefin copolymer, and a polyolefin compatibilizer is provided. The propylene/α-olefin copolymer can be dispersed as discrete physical domains within a continuous matrix of the polylactic acid. Without intending to be limited by theory, it is believed that the discrete domains can help resist the expansion of the composition during a molding operation, which minimizes the degree of expansion experienced by the composition during molding in comparison to conventional polylactic acid compositions.
摘要:
A fiber formed from a thermoplastic composition that contains a thermoplastic starch and an aliphatic-aromatic copolyester is provided. The copolyester enhances the strength of the starch-containing fibers and also facilitates the ability of the starch to be melt processed. Due to its relatively low melting point, the aliphatic-aromatic copolyester may also be extruded with the thermoplastic starch at a temperature that is low enough to avoid substantial removal of the moisture found in the starch. Furthermore, the aliphatic-aromatic copolyester is also modified with an alcohol so that it contains one or more hydroxyalkyl or alkyl terminal groups. By selectively controlling the conditions of the alcoholysis reaction (e.g., alcohol and copolymer concentrations, temperature, etc.), the resulting modified aliphatic-aromatic copolyester may have a molecular weight that is relatively low. Such low molecular weight polymers have the combination of a higher melt flow index and lower apparent viscosity, which is useful in a wide variety of fiber forming applications, such as in the meltblowing of nonwoven webs.
摘要:
A film that contains a core layer positioned adjacent to an outer layer is provided. The core layer contains a relatively high percentage of thermoplastic biopolymers that are both biodegradable and renewable. Despite being biodegradable and renewable, many biopolymers tend to be relatively stiff in nature. The present inventors have discovered, however, that through selective control over the components in the core and outer layers, a film can be readily formed having good mechanical properties. Among other things, this is accomplished by blending the biopolymer in the core layer with a polyolefin. A polyolefin is also employed in the outer layer. In addition to providing functionality to the film (e.g., heat sealing, printing, etc.), the polyolefin-containing outer layer also helps counteract the stiffness of the biopolymer in the core layer, and helps improve processability, stiffness, and ductility.
摘要:
A method and system for melt processing a thermoplastic composition that contains a starch and plasticizer is provided. The composition is melt blended and extruded through a die to form an extrudate, which is thereafter cooled using a multi-stage system of the present invention that includes at least one water-cooling stage and at least one air-cooling stage. More particularly, the extrudate is initially contacted with water for a certain period time so that it becomes partially cooled and solidified on its surface. After the water-cooling stage(s), the extrudate is also subjected to at least one air-cooling stage in which a stream of air is placed into contact with the extrudate.