摘要:
A method of protecting a charge trapping dielectric flash memory cell from UV-induced charging, including fabricating a charge trapping dielectric flash memory cell in a semiconductor device; depositing and planarizing an interlevel dielectric layer over the charge trapping dielectric flash memory cell and depositing over the planarized interlevel dielectric layer at least one UV-protective layer, the UV-protective layer including a substantially UV-opaque material.
摘要:
One aspect of the present invention relates to a method of fabricating a polymer memory device in a via. The method involves providing a semiconductor substrate having at least one metal-containing layer thereon, forming at least one copper contact in the metal-containing layer, forming at least one dielectric layer over the copper contact, forming at least one via in the dielectric layer to expose at least a portion of the copper contact, forming a polymer material in a lower portion of the via, and forming a top electrode material layer in an upper portion of the via.
摘要:
Degradation of organic-doped silica glass low-k inter-layer dielectrics during fabrication is significantly reduced and resolution of submicron features is improved by the formation of dual nature capping/ARC layers on inter-layer dielectric films. The capping/ARC layer is formed in-situ on the organic-doped silica glass inter-layer dielectric. The in-situ formation of the capping/ARC layer provides a strongly adhered capping/ARC layer, formed with fewer processing steps than conventional capping and ARC layers.
摘要:
The density of a deposited silicon nitride layer is increased by laser thermal annealing in N2, thereby increasing etch selectivity with respect to an overlying oxide and, hence, avoiding damage to underlying silicide layers and gates. Embodiments include laser thermal annealing a silicon nitride layer deposited as an etch stop layer, e.g., in fabricating EEPROMs, to increase its density by up to about 8%, thereby increasing its etch selectivity with respect to an overlying BPSG layer to about {fraction (1/12)} to about {fraction (1/14)}.
摘要:
A semiconductor device and a process for fabricating the device, including, in one embodiment, a silicon substrate; a first interfacial barrier layer on the silicon substrate, in which the first interfacial barrier layer may include aluminum oxide, silicon nitride, silicon oxynitride or a mixture thereof; and a layer of a high-K dielectric material. The device may further include a second interfacial barrier layer on the high-K dielectric material layer, and may further include a polysilicon or polysilicon-germanium gate electrode formed on the second interfacial barrier layer.
摘要:
Reliable contacts/vias are formed by filling an opening in a dielectric layer with W and laser thermal annealing to eliminate or significantly reduce voids. Embodiments include depositing W to fill a contact/via opening in an interlayer dielectric, laser thermal annealing in N2 to elevate the temperature of the W filling the contact/via opening and reflow the W thereby eliminating voids. Embodiments include conducting CMP either before or subsequent to laser thermal annealing.
摘要:
A manufacturing method for a MirrorBit® Flash memory includes providing a semiconductor substrate and depositing a charge-trapping dielectric material. First and second bitlines are implanted and a wordline material is deposited. A hard mask material is deposited over the wordline material. The hard mask material is of a material having the characteristic of being deposited rather than grown. A photoresist material is deposited over the wordline material and is patterned to form a patterned hard mask. The patterned photoresist material is removed. The wordline material is processed using the patterned hard mask to form a wordline. The patterned hard mask material is removed.
摘要:
The electromigration resistance of capped Cu or Cu alloy interconnects is significantly improved by pumping out the deposition chamber after treating the exposed planarized surface of the Cu or Cu alloy with an ammonia-containing plasma, introducing NH3 and N2 into the deposition chamber, and then ramping up the introduction of SiH4 prior to initiating deposition of a silicon nitride capping layer. Embodiments include ramping up the introduction of SiH4 in two stages prior to initiating plasma enhanced chemical vapor deposition of the silicon nitride capping layer.
摘要:
A method for making 0.25 micron semiconductor chips includes using TEOS as the high density plasma (HDP) inter-layer dielectric (ILD). More specifically, after establishing a predetermined aluminum line pattern on a substrate, TEOS is deposited and simultaneously with the TEOS deposition, excess TEOS is etched away, thereby avoiding hydrogen embrittlement of and subsequent void formation in the aluminum lines that could otherwise occur if silane were used as the HDP ILD.
摘要:
A method for making 0.25-micron semiconductor chips includes annealing the metal interconnect lines prior to depositing an inter-layer dielectric (ILD) between the lines. During annealing, an alloy of aluminum and titanium forms first, which subsequently volumetrically contracts, thereby forming a titanium aluminide compound, with the contraction being absorbed by the aluminum. Because the alloy is reacted to form the metal compound prior to ILD deposition, however, the aluminum is not constrained by the ILD when it attempts to absorb the contraction of the alloy. Consequently, the likelihood of undesirable void formation in the interconnect lines is reduced.