Abstract:
Disclosed is a method for preparing a clay-dispersed polymer nanocomposite. In this method, a polymer, which carries oxygen atoms within the repeating units of its backbone and is thermodynamically compatible with a binder resin, is used as a matrix resin. Useful is poly(&egr;-caprolactone) owing to its thermodynamic compatibility with poly(styrene-co-acrylonitrile)copolymers, poly(acrylonitrile-co-butadiene-co-styrene) copolymers, and poly(vinylchloride) resins. Poly(&egr;-caprolactone) resins aid the binder resins to penetrate into silicate layers so that the silicate of the organophilic clay was completely delaminated to silicate lamellas.
Abstract:
A pseudomorphic high electron mobility transistor (PHEMT) power device formed on a double planar doped epitaxial substrate and capable of operating with a single voltage source and a method for manufacturing the PHEMT power device are provided. The PHEMT power device includes: an epitaxial substrate including a GaAs buffer layer, an AlGaAs/GaAs superlattice layer, an updoped AlGaAs layer, a first doped silicon layer, a first spacer, an InGaAs electron transit layer, a second spacer, a second doped silicon layer having a different doping concentration from the first doped silicon layer, a lightly doped AlGaAs layer, and an undoped GaAs cap layer stacked sequentially on a semi-insulating GaAs substrate; a source electrode and a drain electrode formed on and in ohmic contact with the undoped GaAs cap layer; and a gate electrode formed on the lightly doped AlGaAs layer to extend through the undoped GaAs cap layer.
Abstract:
The present invention relates to a method for fabricating an inductor and, more particularly, to a method for fabricating a spiral inductor used in a monolithic microwave integrated circuit on a silicon substrate using semiconductor fabrication processes. The method for fabricating an inductor, comprising the steps of: forming a first dielectric layer on a silicon substrate and forming a first metal wire on the first dielectric layer, wherein the first metal wire is in contact with an active element formed on the silicon substrate; and alternatively forming dielectric layers and metal layers, wherein the metal layers are electrically connected with an upper metal wire and a lower metal wire and wherein the metal layers are patterned using the dielectric layers as etching mask, whereby a metal corrosion is prevented by using the spiral dielectric pattern as the etching mask.
Abstract:
An apparatus for improving linearity of small signal according to the present invention comprises a least of one non-linear signal generating means for receiving a first DC bias larger than a threshold voltage and for generating a non-linear signal; feedback means for returning the non-linear signal from said a least of one non-linear signal generating means; and amplifying means for receiving, amplifying and outputting to an output unit, a second DC bias larger than the threshold voltage and a reversed and feedback non-linear signal such that the non-linear signal is cancelled. The linearizers according to the present invention have a higher linearity and a simple constitution, and thereby being used for various terminals.
Abstract:
A solar cell including a first conductive type semiconductor substrate; a first intrinsic semiconductor layer on a front surface of the semiconductor substrate; a first conductive type first semiconductor layer on at least one surface of the first intrinsic semiconductor layer; a second conductive type second semiconductor layer on a back surface of the semiconductor substrate; a second intrinsic semiconductor layer between the second semiconductor layer and the semiconductor substrate; a first conductive type third semiconductor layer on the back surface of the semiconductor substrate, the third semiconductor layer being spaced apart from the second semiconductor layer; and a third intrinsic semiconductor layer between the third semiconductor layer and the semiconductor substrate.
Abstract:
An embodiment of the present invention relates to a radar apparatus, wherein a distance to a target and a velocity of the target are measured by transmitting a digitally modulated transmitting signal using a digital code and receiving and demodulating an echo signal returned due to reflection of the transmitting signal from the target.
Abstract:
Disclosed herein is a photoelectric conversion device having a semiconductor substrate including a front side and back side, a protective layer formed on the front side of the semiconductor substrate, a first non-single crystalline semiconductor layer formed on the back side of the semiconductor substrate, a first conductive layer including a first impurity formed on a first portion of a back side of the first non-single crystalline semiconductor layer, and a second conductive layer including the first impurity and a second impurity formed on a second portion of the back side of the first non-single crystalline semiconductor layer.
Abstract:
An integrated circuit comprises a digitally-controlled power generation stage (DPA) for converting an input signal to a radio frequency (RF) carrier, the DPA comprising a plurality of selectable switching devices capable of adjusting an envelope of the RF carrier; and a pulse width modulator (PWM) generator arranged to generate a PWM control signal and operably coupleable to the plurality of selectable switching devices of the DPA. The PWM generator inputs the PWM control signal to a subset of the plurality of the selectable switching devices such that a PWM signal adjusts the envelope RF carrier output from the DPA.
Abstract:
A solar cell module includes an array substrate, a plurality of solar cells and a between-cell bus electrode. The solar cells are arranged to be adjacent to each other on the array substrate. Each of the solar cells includes a wire electrode. The bus electrode between the cells partially overlaps with each of adjacent solar cells and extends in a first direction, to be electrically connected to the wire electrode of each of the adjacent solar cells. Accordingly, the power efficiency of the solar cell module may be improved.
Abstract:
An integrated circuit comprises a digitally-controlled power generation stage (DPA) for converting an input signal to a radio frequency (RF) carrier, the DPA comprising a plurality of selectable switching devices capable of adjusting an envelope of the RF carrier; and a pulse width modulator (PWM) generator arranged to generate a PWM control signal and operably coupleable to the plurality of selectable switching devices of the DPA. The PWM generator inputs the PWM control signal to a subset of the plurality of the selectable switching devices such that a PWM signal adjusts the envelope RF carrier output from the DPA.