摘要:
Each delay unit is divided into two delay unit groups, the preceding stage side and the succeeding stage side. To the delay unit group in the preceding stage side, power supply voltage is supplied via a power supply terminal, and to each delay unit of the delay unit group in the succeeding stage side, power supply voltage is supplied from the power supply terminal via a power supply control switch. A forward-pulse detecting circuit detects that forward pulse was propagated to a stage between the N-th stage and a stage a predetermined number of stages before the N-th, and outputs the detected result to the power supply control switch. With this operation, when forward pulse is propagated to the (N+1)th stage, power supply voltage is supplied also to the delay unit group in the succeeding stage side. As electric power is not supplied to the delay unit group in the succeeding stage side when forward pulse is not propagated to the (N+1)th stage, wasteful consumption of electric power is prevented.
摘要:
A state-holding circuit initializing circuit initializes state-holding circuit when propagation of forward pulse to the forward-pulse delay circuits in the last stage is detected. With this operation, synchronization is established in a short time from the resumption of outputting from a receiver. The state-holding circuit control circuit also controls the reset timing of the state-holding circuit. A forward-pulse adjusting circuit controls the pulse width of forward pulse to be supplied to the forward-pulse delay line. With this operation, the stages from the stage where rearward pulse was generated to the first stage are securely turned to the set state, enabling propagation of rearward pulse and synchronization is established. Thus, synchronization is established reliably even when output from a receiver stops or the duty of an external clock signal is heavy.
摘要:
An image memory has a random access memory array capable of being randomly accessed; a serial access memory array partitioned into n power of 2 (n>1) divisional areas cyclically and serially accessed in asynchronism with the random access memory; data transfer unit for transferring data between the random access memory array and the serial access memory array; a determined unit for determining a row of data to be transferred from the random access memory array to each of the divisional areas; and a designating unit for designating at least one of a top serial access address and a last serial access address respectively of each divisional area, wherein the data transfer unit executes data transfer from the random access memory array to the serial access memory array in accordance with outputs from the determining unit and the designating unit.
摘要:
In a semiconductor memory system, an SDRAM comprises a memory cell array 101 which is divided into a plurality of cell array blocks, a column decoder, a row decoder, and a sense amplifier circuit. In the SDRAM, a first operation mode with a first cycle time is set when successive access within a cell array block is conducted, a second operation mode with a second cycle time shorter than the first cycle time is set when successive access covering the cell array blocks being apart from each other is conducted and a third operation mode with a medium cycle time is set when successive access covering the cell array blocks adjacent to each other is conducted. With the above constitution, a high speed access can be realized without provision of a specific accessory circuit while suppressing overhead for a semiconductor chip size.
摘要:
A maximum flight time measuring circuit constituted by a first delay circuit for delaying a system clock and controlling its delay time in accordance with a strobe clock from DIMMs and a delayline register circuit for storing a delayed state in the delay circuit, and a second delay circuit are provided. Contents of the delayline register circuit are input to the second delay circuit, which is controlled to generate the same delay as that of the first delay circuit. The output of the second delay circuit is supplied as a data fetch signal to a control buffer for receiving read data DQ from the DIMMs.
摘要:
A clock-synchronous semiconductor memory device includes many memory cells arranged in matrix, a count section for counting the actual number of cycles of a continuous, externally-supplied basic clock signal, a control section for inputting a row enable control signal (/RE) and the column enable control signal (/CE) provided from an external device, other than the basic clock signal, for which the control signals are at a specified level, synchronized with the basic control signal, and for setting the initial address for data access of the memory cells, and a data I/O section for executing a data access operation for the address set by the control section. In the device, the output of data from the memory cells through the data I/O means is started after the setting of the initial address by the control sections and after a specified number of basic clock signals has been counted by the count section.
摘要:
Banks are arranged on a memory chip, forming a matrix. A data input/output circuit is provided at one side of the memory chip. A data bus is provided among the banks and connected to the data input/output circuit. Each bank has a plurality of memory cell arrays a cell-array controller, a row decoder, column decoders, and a DQ buffer. The cell-array controller and the row decoder oppose each other. The column decoders oppose the DQ buffer. Local DQ lines are provided between the memory cell arrays, and global DQ liens extend over the memory cell arrays. The local DQ lines extend at right angles to the global DQ lines.
摘要:
A plurality of sense amplifiers are provided between a plurality of memory cell arrays having a plurality of memory cells. These sense amplifiers are connected to bit lines of the respective memory cell arrays by array selection switches. Each of the sense amplifiers is connected to data lines by column switches. An array control portion is provided at each of the memory cell arrays. This array control portion selectively controls the array selection switches and column switches to transmit the data in an arbitrary memory cell in a memory cell array to the data lines through the sense amplifier.
摘要:
A synchronous DRAM has cell arrays arranged in matrix, divided into banks accessed asynchronously, and n bit I/O buses for transferring data among the cell arrays. In the DRAM, the banks are divided into m blocks, the n-bit I/O buses located between adjacent banks, is used for time sharing between adjacent banks in common, the n bit I/O buses, used for time sharing between adjacent banks in common, are grouped into n/m-bit I/O buses, every n/m bits for each block of m blocks of bank, and in each block in each bank, data input/output are carried out between the n/m-bit I/O buses and data bus lines in each block. A synchronous DRAM includes a first and second internal clock systems for controlling a burst data transfer in which a string of burst data being transferred in synchronism with an external clock signal, when one of the internal clock systems is driven, the burst data transfer is commenced immediately by the selected internal clock system.
摘要:
It is an object of this invention to provide a semiconductor memory device in which a failure can be efficiently remedied even for a larger number of bits. In a multi-bit memory capable of simultaneously exchanging a plurality of data upon reception of an address, spare DQ lines (15c) commonly used for each I/O, a spare sense amplifier circuit (13c), a spare column switch (14c), a fuse box (20) for storing the address of a DQ line in which a failure has occurred, and fuse circuits (21-1, 21-2, . . . ) for storing an I/O to which the failure-DQ line belongs are arranged to remedy the failure for each I/O. Since only a memory cell belonging to one I/O where a failure has occurred is replaced, unnecessary replacement is not executed, and the memory cell can be efficiently remedied even for a larger number of bits.