Abstract:
A catalytic device for removal of airborne volatile compounds from air includes a substrate and an electrodeposited catalytic coating. The substrate has a surface. The electrodeposited catalytic coating is on the surface of the substrate. The electrodeposited catalytic coating includes a catalyst that is capable of interacting with airborne volatile compounds. The electrodeposited catalytic coating has a multimodal porosity distribution.
Abstract:
An article which includes a structure of a ceramic material that has a composition SiOxMzCy, where Si is silicon, O is oxygen, M is at least one metal and C is carbon and wherein x 0 and z
Abstract translation:一种制品,其包含具有组成SiO x M z C y的结构,其中Si是硅,O是氧,M是至少一种金属,C是碳,并且其中x <2,y> 0和z <1,x z不为零。
Abstract:
An improvement in apparatus and methods of making electrical machines, utilizing a combination of additive manufacturing techniques to create, in particular, small, high efficiency stators, but also useful for making complex rotor structures.
Abstract:
A catalytic device comprises a mixed structure of photocatalyst and silica. The mixed structure may be comprised of alternating layers of photocatalyst and silica, a layer having a uniform mixture of photocatalyst particles and silica particles, or a layer having a graded mixture of photocatalyst particles and silica particles.
Abstract:
A method of treating a preceramic material includes modifying a moiety Si—O—R of a polycarbosilane material with at least one metal (M), where Si is silicon, O is oxygen and R includes an alkyl or aryl moiety, by reaction to substitute R with M to produce a preceramic polycarbosilane or polycarbosiloxane material that includes a moiety Si—O-M.
Abstract:
A method of forming a photocatalyst device includes depositing a layer of UV photocatalyst and depositing islands of a sequestering agent on a surface of the layer of the UV photocatalyst.
Abstract:
A composite article includes a substrate and a protective layer disposed on the substrate. The protective layer has a silicon-aluminum-carbon-nitrogen solid solution composition and microstructure.
Abstract:
Components with improved erosion resistance are disclosed. A surface of the component or a substrate of the component is modified by coating the substrate with an elastomer layer. The elastomer layer is then modified by embedding hard particles onto an outer side of the elastomer layer. The hard particles exhibit higher fractured toughness providing enhanced erosion protection. The elastic properties of the elastomer experience little reduction because the surface embedded particles are located only at the outer side or outer surface of the elastomer layer. Therefore, the bond between the inner side of the elastomer layer and the substrate or component surface is not interfered with and the potential for electro-chemical corrosion and poor adhesion are not increased by the presence of the hard particles as the hard particles are located away from the inner face between the elastomer layer and the substrate.
Abstract:
A gas treatment system for treating a gas stream containing contaminants includes first and second gas treatment members in fluid communication with each other. Each of the first and second gas treatment members is selectively controllable between an on and an off condition. A third gas treatment member is in fluid communication with the first and second gas treatment members, and the third gas treatment member selectively retains or releases the contaminants based upon the on or off condition of at least one of the first or second gas treatment members.
Abstract:
A refractory ceramic composite for an armor shell, comprising a ceramic core that is formable to replicate a portion of a three dimensional surface, e.g., of an aircraft, to provide ballistic protection. A method of making a shell of refractory ceramic armor capable of conforming to the geometry is provided. The shell is formed by forming a mold to replicate the surface area; arranging a ceramic core on the mold; and removing the mold to leave said ceramic core, and heat treating the ceramic core to a desired hardness. The ceramic core is in the shape of the surface area.