Abstract:
An adsorbent for carbon dioxide may include a structure that includes composite metal oxide including a first metal (M1) and a second metal (M2) linked through oxygen (O). The first metal (M1) may be selected from an alkali metal, an alkaline-earth metal, and a combination thereof. The second metal (M2) may have a trivalent oxidation number or greater. The composite metal oxide may include mesopores inside or in the surface thereof. The adsorbent may be included in a capture module for carbon dioxide. A method of reducing emissions may include adsorbing carbon dioxide using the adsorbent for carbon dioxide.
Abstract:
An adsorbent for carbon dioxide may include an inorganic oxide porous structure having a plurality of mesopores and an active compound bound to the surface of the mesopores. The active compound may be selected from an alkali metal-containing compound, an alkaline-earth metal-containing compound, and a combination thereof. Various example embodiments also relate to a method of preparing the adsorbent for carbon dioxide and a capture module for carbon dioxide including the adsorbent for carbon dioxide.
Abstract:
A dialysis system comprising: a sorbent cartridge in fluid communication with at least one of a patient or a dialyzer, the sorbent cartridge including a housing having a zirconium phosphate layer followed by at least one of a urease layer, a zirconium oxide layer, or a carbon layer; a storage container in fluid communication with the sorbent cartridge; a pump in fluid communication sorbent cartridge and the storage container; and a control unit in operable communication with the pump, wherein the control unit is programmed to cause the pump to pump a dialysis fluid to flow (i) in a first direction through the sorbent cartridge, wherein the zirconium phosphate layer is contacted by the dialysis fluid before the at least one of the urease layer, zirconium oxide layer or carbon layer and (ii) in a second direction, reverse from the first direction, through the sorbent cartridge wherein the at least one of the urease layer, zirconium oxide layer or carbon layer is contacted by the dialysis fluid before the zirconium phosphate layer.
Abstract:
Rare earth metal compounds, particularly lanthanum, cerium, and yttrium, are formed as porous particles and are effective in binding metals, metal ions, and phosphate. A method of making the particles and a method of using the particles is disclosed. The particles may be used in the gastrointestinal tract or the bloodstream to remove phosphate or to treat hyperphosphatemia in mammals. The particles may also be used to remove metals from fluids such as water.
Abstract:
Provided are a gettering agent, an absorptive film including the same, and an organic electronic device. In detail, the absorptive film including the gettering agent of the present application is provided on the front side and/or back side of the organic electronic device, and effectively absorbs and blocks moisture, thereby improving the lifespan and durability of the organic electronic device. In addition, the gettering agent of the present application uses a moisture absorbent particle having a nano size to secure transparency of the absorptive film, thereby implementing a top emitting device and also absorbing moisture in the atmosphere during the manufacturing process. Therefore, it is possible to solve the problem of losing the total amount of moisture absorption.
Abstract:
An adsorbent for carbon dioxide may include a mesoporous inorganic oxide having a crystalline halide of an alkali metal or alkaline earth metal supported thereto and a chemical species containing phosphorous (P), sulfur(S), or boron (B) supported thereto.
Abstract:
The invention is in the field of modified carbon products. More in particular, the invention is in the field of graphitized activated carbon bodies. The invention is directed to carbon bodies and ferromagnetic carbon bodies, the production of these bodies from activated carbon, and the applications of the carbon bodies and ferromagnetic carbon bodies, for instance in water treatment and in electrochemical applications.
Abstract:
The present invention relates to a magnetite-birnessite mixture, to a synthesis method therefor, and to a water-treatment method using the same. The magnetite-birnessite mixture synthesis method according to the present invention includes: a first synthesis step in which magnetite is synthesized; a second synthesis step in which manganese is made to adsorb onto the surface of the magnetite by supplying manganese while maintaining a basic state in the presence of the magnetite, and then synthesizing birnessite on the surface of the magnetite by supplying an oxidizing agent and sodium, thereby synthesizing a mixture in which magnetite and birnessite are bound together; and a purification step in which the mixture of magnetite and birnessite is purified.
Abstract:
A detachable module for optionally recharging sorbent materials, including zirconium phosphate, with an optional bypass and conduits for a sorbent cartridge. The sorbent cartridge can have one or more modules contained therein having connectors connecting each of the modules. One or more of the modules can be reusable and the sorbent materials therein recharged.