摘要:
A powder metal compact is disclosed. The powder metal compact includes a cellular nanomatrix comprising a nanomatrix material. The powder metal compact also includes a plurality of dispersed particles comprising a particle core material that comprises an Mg—Zr, Mg—Zn—Zr, Mg—Al—Zn—Mn, Mg—Zn—Cu—Mn or Mg—W alloy, or a combination thereof, dispersed in the cellular nanomatrix.
摘要:
Described herein are nanofibers and methods for making nanofibers that have a plurality of pores. The pores have of any suitable size or shape. In some embodiments the pores are “mesopores”, having a diameter between 2 and 50 nm. In some embodiments, the pores are “ordered”, meaning that they have a substantially uniform shape, a substantially uniform size and/or are distributed substantially uniformly through the nanofiber. Ordering of the pores results in a high surface area and/or high specific surface area. Ordered pores, without limitation, result in a nanofiber that is substantially flexible and/or non-brittle. The nanofibers and methods for making nanofibers may be used, without limitation, in batteries, capacitors, electrodes, solar cells, catalysts, adsorbers, filters, membranes, sensors, fabrics and/or tissue regeneration matrixes.
摘要:
In one embodiment, a method is provided for fabrication of a semitransparent conductive mesh. A first solution having conductive nanowires suspended therein and a second solution having nanoparticles suspended therein are sprayed toward a substrate, the spraying forming a mist. The mist is processed, while on the substrate, to provide a semitransparent conductive material in the form of a mesh having the conductive nanowires and nanoparticles. The nanoparticles are configured and arranged to direct light passing through the mesh. Connections between the nanowires provide conductivity through the mesh.
摘要:
Disclosed are ruthenium nanoparticles having an essentially face-centered cubic structure. Disclosed is a method for producing ruthenium nanoparticles having an essentially face-centered cubic structure. This production method includes a step (i) of maintaining a solution containing ruthenium (III) acetylacetonate, polyvinylpyrrolidone, and triethylene glycol at a temperature of 180° C. or higher.
摘要:
A metal nanonetwork includes metal nanostructures that are joined by metallic bond. The joined part between the metal nanostructures includes a fillet part. In the joined part between the metal nanostructures, the distance between the central axis of one metal nanostructure and the central axis of another metal nanostructure is smaller than the sum of the radii of both metal nanostructures. The metal nanostructure is a metal nanowire. A first method for producing the metal nanonetwork includes a process of forming an oxide film on the outermost surface of the metal nanostructure, and a process of reducing the oxide film at the joined parts of a plurality of the metal nanostructures to thereby join the metal nanostructures.
摘要:
A nanoporous gold disk (NPGD) as a novel surface-enhanced Raman spectroscopy (SERS) substrate. NPGD has SERS enhancement factor similar to that of gold nanoshells, but allows, for example, at least three times more benzenethiol molecules to be attached to its surface due to large surface-to-volume ratio. The high capacity enables the rapid detection of attomole-level benzenethiol molecules with relatively high detector temperatures. Additionally, a fabrication process to make NPGD with controlled size and highly reproducible SERS activities.
摘要:
The present invention provides an aqueous solution-based method for producing nano-sized silver platelets, which employs the controlled mixing of a silver ion solution, a reducing solution, and an acidic solution, under suitable conditions. Also provided are the silver platelets produced thereby, and compositions containing the silver platelets.
摘要:
The present invention relates to a new method for preparing anisotropic metal nanoparticles with high aspect ratios and different types of structures by means of catalysis by Atomic Quantum Clusters (AQCs).