Abstract:
The invention relates to a process for treating a hydrocarbonaceous waste material, in particular a rolling scale slurry and/or grinding slurry, the waste material being heated in a dryer, preferably moving, by the indirect supply of heat, and in the process hydrocarbons, if appropriate together with other volatile components, in particular H2O, being removed. In this process, in the dryer, at low temperature, the hydrocarbons are broken down in a specific way, the hydrocarbons being broken down by chemical and/or radiation means, which effect decomposition of the hydrocarbons of low volatility into highly volatile hydrocarbons, preferably decomposing high molecular weight hydrocarbons into lower molecular weight hydrocarbons, and the hydrocarbons, if appropriate together with the other volatile components in particular together with the H2O, are at least partially discharged, in particular by suction, from the vessel. The invention also relates to a apparatus for treating a hydrocarbonaceous waste material.
Abstract:
The present invention relates to the disposal of fluid waste containing organic matter and water in a manner that utilizes the energy potential and the heat capacity of the contaminating matter in the waste. The energy potential and the heat-generating capacity of the organic matter is used to dispose thereof with minimal energy input from an outside source.
Abstract:
A deodorant, for substances containing hydrogen sulfide or mercaptans, which includes a combination of a peroxide and a nitrate ion, a combination of a peroxide, a nitrate ion and a metal salt, or a combination of a chelating agent and one of the above combinations, and a process for deodorization comprising treating a substance for treatment, containing hydrogen sulfide or mercaptans, with the above deodorant. Smell caused by hydrogen sulfide or mercaptans is effectively removed by the deodorant. Smell from waste water, sludge, and water discharged from washing apparatuses can be efficiently removed with use of the deodorant in a small amount in accordance with this process.
Abstract:
A method for generating electricity in which sludge is anaerobically digested to form a gas mixture of methane and carbon dioxide and a residue of digested sludge. Water is removed from the digested sludge to form dewatered sludge, which, in turn, is gasified to form a gaseous composition which includes carbon monoxide and hydrogen. The gas mixture containing methane and carbon dioxide produced in the anaerobic digestion step is mixed with the gas mixture containing hydrogen and carbon monoxide from the gasification step and burned in an apparatus, such as a micro-turbine, for generating electricity. The non-carbonaceous fraction of the sludge is melted during the gasification step and rendered environmentally benign.
Abstract:
A system for handling aqueous sludge to a combustor such that pollutant emissions associated with combustion operations, e.g., cement manufacturing, are reduced. Sludge is accumulated at a receiving site from where it is transported to a sludge conduit. The sludge is then introduced from the sludge conduit into a combustion apparatus at a point effective to reduce pollutant emissions produced by the combustion operation.
Abstract:
In the installation for decontaminating a liquid effluent contaminated by at least one organic substance, a gaseous combustible is burned in a reactor to produce a flame containing hydroxyl free radicals OH.degree. and oxygen O.sub.2 and that flame is centered on the geometrical axis of the reactor. A helical flow of liquid effluent is produced on the inner cylindrical wall of the reactor to cause a direct contact between the hydroxyl free radicals and the organic substance contaminating the liquid effluent. Having hydroxyl free radicals present, the organic substance is oxidized in liquid phase. The high temperature of the flame enables completion of the oxidation of the organic substance, in liquid phase, by means of the oxygen O.sub.2 present in the flame. At the outlet of the reactor, the liquid and gaseous products are separated; the liquid product is collected while the gaseous product is evacuated.
Abstract:
A materials treatment system which includes filtration and treatment of solid and liquid components of a material, such as a waste material. A filter or substrate assembly is provided which allows liquids to pass therethrough, while retaining solids. The solids are then incinerated utilizing microwave energy, and the liquids can be treated after passing through the filter element, for example, utilizing a treatment liquid such as an oxidant liquid. The filter assembly can also include an exhaust filter assembly which removes solids or particulate matter from exhaust gasses, with the retained solids/particulates incinerated utilizing microwave energy.
Abstract:
A method for incinerating excess sludge from biological waste water treatment plants, in particular sludges arising from the manufacture of paper or paper pulp, preferably using the magnesium fusion process. Before incineration, the excess sludge is neutralized with the same base as used in the paper pulp process and the dust entrained by the combustion gas is precipitated to recover the base.
Abstract:
A pumpable aqueous slurry of sewage sludge as produced by the steps of (1) dewatering sewage sludge to produce an aqueous slurry having a solids content of about 10 to 25 wt. %; (2) pretreating said aqueous slurry of sewage sludge to improve its slurrying characteristics by one or a combination of (a) heating, (b) hydrothermal treatment, and (c) heating, mixing and shearing; and (3) mixing the following materials together at a temperature in the range of about ambient to 400.degree. F. to produce a pumpable aqueous slurry having a solids content in the range of about 30 to 65 wt. %: (a) pretreated aqueous slurry of sewage sludge; (b) a nonionic water soluble alkoxylated alkylphenol additive; and (c) sewage sludge-containing material and/or solid carbonaceous fuel-containing material to increase the solids loading.
Abstract:
A process is disclosed in which any off-gas generated in a wastewater treatment plant, which off-gas has a low calorific (or BTU) value about one-tenth of that of natural gas, and usually even less, may be profitably burned in a multiple hearth furnace if the off-gas is first wet-scrubbed to a temperature below about 90.degree. F., then pre-heated by passing it through the center shaft of a multiple hearth furnace, before the pre-heated gas is burned. Such cooling of the off-gas by wet-scrubbing has the effect of lowering the moisture content of the wet-scrubbed gas sufficiently so that it may be advantageously pre-heated in the center shaft of the furnace and recycled to the hearths to assist in the combustion of sludge. In addition to providing desirable savings in auxiliary fuel usage, wet-scrubbed off-gas is unexpectedly cleansed of a sufficient amount of its corrosive components so as to permit ducting the wet-scrubbed gas in mild steel or cast iron equipment. Further, burning an odorous gas conveniently deodorizes it. The greater opening efficiency thus achieved provides more economical operation of a wastewater treatment facility. The process is most profitably utilized with decant tank off-gas ("DTO") which is generated in an amount about equal to the normal cooling gas capacity ("CG") of the furnace's center shaft, and which DTO is about equal to the volume of combustion air ("CA") which would be required to burn the sludge.