Abstract:
The structure of base for decorative aquatic ball mainly contains a shell, a hollow transparent shell made of plastic material, having a surface with laser engraved pattern; and a decorative aquatic ball, a light-transmittable three-dimensional shape, disposed on top of the shell, and sealing in a fluid with slightly higher viscosity. As such, the surface with laser engraved pattern enables the base carrying the aquatic ball to create rich and layered visual effects.
Abstract:
The present disclosure discloses a method for providing protective coatings onto one or more surfaces of a frangible enclosure of an LED lamp and a lamp prepared therefrom. More particularly, the present disclosure relates to LED lamps comprising polymer coatings on at least one or more surfaces of an enclosure of an LED lamps.
Abstract:
One or more light emitting diode diodes (LEDs) are attached to a printed circuit board. The attached LEDs are connectable with a power source via circuitry of the printed circuit board. An overmolding material is insert molded an over at least portions of the printed circuit board proximate to the LEDs to form a free standing high thermal conductivity material overmolding that covers at least portions of the printed circuit board proximate to the LEDs. The free standing high thermal conductivity material has a melting temperature greater than about 100° C. and has a thermal conductivity greater than or about 1 W/m·K. In some embodiments, the free standing high thermal conductivity material is a thermoplastic material.
Abstract:
In various embodiments, a lighting device may include: a light-emitting optoelectronic component; an envelope bulb, within which the component is arranged; and scattering means that scatter diffusely, wherein the scattering means are arranged in such a way that, as viewed in a sectional plane which includes a principal ray of the light emitted by the component, light emitted along rays tilted relative to the principal ray is scattered to a greater extent as the tilting angle between ray and principal ray decreases, and this increase in the scattering is fulfilled in a continuous angular range of at least 30°.
Abstract:
A method of manufacturing multiple light emitting diode lighting assemblies each having a different initial light output is provided. A first heat sink is manufactured and a first platform assembly with a plurality of light emitting diodes is formed with an automated device. The automated device selects a first predetermined lumen output. A second heat sink is then manufactured using the same manufacturing process, and a second platform assembly with a plurality of light emitting diodes is formed with the automated device. During this time, the automated device selects a second predetermined lumen output based on information inputted into the automated device.
Abstract:
An LED lamp has a lamp body, a base provided on one end of the lamp body, a light transmissive cover provided on an opposite side of the lamp body from the base, a light source substrate disposed inside the light transmissive cover, and at least one LED unit mounted on the light source substrate. The LED unit has an LED chip and a light transmissive encapsulant encapsulating the LED chip. The LED chip is mounted on the light source substrate. The encapsulant is molded such that the encapsulant is raised from the light source substrate. The LED unit radiates light from an entire surface of the encapsulant in an angular range including a region around a periphery of the LED unit.
Abstract:
One or more light emitting diode diodes (LEDs) are attached to a printed circuit board. The attached LEDs are connectable with a power source via circuitry of the printed circuit board. An overmolding material is insert molded an over at least portions of the printed circuit board proximate to the LEDs to form a free standing high thermal conductivity material overmolding that covers at least portions of the printed circuit board proximate to the LEDs. The free standing high thermal conductivity material has a melting temperature greater than about 100 ° C. and has a thermal conductivity greater than or about 1 W/m·K. In some embodiments, the free standing high thermal conductivity material is a thermoplastic material.
Abstract:
A light assembly includes a light source circuit board, a plurality of light sources disposed on the light source circuit board, a housing thermally coupled to the light source circuit board and a lens cap assembly comprising a lens cap and a heat dissipation layer. The heat dissipated layer distributes heat from the light source circuit board through the lens cap and external to the light assembly.
Abstract:
An intelligent type lamp and a vehicle lamp apparatus are disclosed. The lamp includes a first substrate, a second substrate disposed on the first substrate, and a plurality of light sources disposed on the second substrate, wherein the light sources are grouped into at least one light source array, in each of which the light sources are disposed in a line, and the at least one light source array includes neighboring first and second light source arrays electrically isolated and individually driven. The light sources of the first light source array may be electrically isolated and individually driven, and the light sources of the second light source array may be electrically isolated and individually driven. Alternatively, the light sources of the first light source array may be electrically isolated and individually driven, and the light sources of the second light source array may be electrically connected and simultaneously driven.
Abstract:
The present disclosure provides an illumination device. The illumination device includes a cap structure. The cap structure is partially coated with a reflective material operable to reflect light. The illumination device includes one or more lighting-emitting devices disposed within the cap structure. The light-emitting devices may be light-emitting diode (LED) chips. The illumination device also includes a thermal dissipation structure. The thermal dissipation structure is coupled to the cap structure in a first direction. The thermal dissipation structure and the cap structure have a coupling interface. The coupling interface extends in a second direction substantially perpendicular to the first direction. The thermal dissipation structure has a portion that intersects the coupling interface at an angle. The angle is in a range from about 60 degrees to about 90 degrees according to some embodiments.