Abstract:
This invention concerns a capacitive acceleration sensor complete with planar build-up, in particular for use as a component part of a vehicle occupant protection system within a motor vehicle. A self-supporting structure will be movably located within a hollow space between two semiconductor elements which are electrically insulated from each other but mechanically bonded, where an acceleration force acting on the inert mass of the self-supporting structure will cause a change in the distance between this self-supporting structure and the semiconductor element. This produces a change in capacity which can be evaluated by means of suitable circuitry.
Abstract:
Fabrication of semiconductor devices with movable structures includes local oxidation of a wafer and oxide removal to form a depression in an elevated bonding surface. A second wafer is fusion bonded to the elevated bonding surface and shaped to form a flexible membrane. An alternative fabrication technique forms a spacer having a depression on a first wafer and active regions on a second wafer, and fusion bonds the wafers together with the depression over the active regions. Devices formed are integrable with standard MOS devices and include FETs, capacitors, and sensors with movable membranes. An FET sensor has gate and drain coupled together and a drain-source voltage which depends on the gate's deflection. Selected operating current, channel length, and channel width provide a drain-source voltage linearly related to gate deflection. Alternatively, two transistors subjected to the same gate deflection provide a differential voltage related to the square root of the deflection if channel currents or channel widths differ. Transistors subjected to the different gate deflections provide a differential signal that cancels effects that are independent of deflection. A capacitive sensor includes a doped region underlying the center of a flexible membrane. The doped region is isolated from a surrounding region which is biased at the voltage of the membrane.
Abstract:
A cantilever semiconductor acceleration sensor element is supported by a pedestal fixed to a base. The base is sealed with a cap, forming an airtight space between the cap and the base that is filled with silicone oil. A central portion of the cap is deformed by an external force to increase the pressure of the silicone oil in the space to a pressure above atmospheric pressure. The generation of air bubbles on the sensor element, even at low temperature, is avoided because of the high pressure of the silicone oil.
Abstract:
A micromachined measuring cell is adapted to be mounted on a support and has a measuring sensor (121) and an assembly structure (120) distinct from one another and associated with each other by a connecting arm (128). At least one part element (103b) of the assembly structure, one part (133) of the connecting arm and one part (103a) of the sensor (121) are produced as one single piece. The assembly structure (120) of this measuring cell is preferably in the shape of a frame surrounding the sensor (121).
Abstract:
A method for forming sub-micron sized bumps on the bottom surface of a suspended microstructure or the top surface of the underlying layer in order to reduce contact area and sticking between the two layers without the need for sub-micron standard photolithography capabilities and the thus-formed microstructure. The process involves the deposition of latex spheres on the sacrificial layer which will later temporarily support the microstructure, shrinking the spheres, depositing aluminum over the spheres, dissolving the spheres to leave openings in the metal layer, etching the sacrificial layer through the openings, removing the remaining metal and depositing the microstructure material over the now textured top surface of the sacrificial layer.
Abstract:
A method for fabricating a micromechanical device and a semiconductor circuit on a substrate includes the steps of forming the micromechanical device on a device area of the substrate, the micromechanical device being embedded in a sacrificial material, selectively depositing a planarization layer on the substrate in a circuit area thereof, forming the semiconductor circuit on the planarization layer in the circuit area and removing the sacrificial material from the embedded micromechanical device. In a preferred embodiment, the planarization layer is an epitaxial silicon layer. A protective cap may be formed over the micromechanical device, so that it is completely encapsulated and is thereby protected against particulate contamination.
Abstract:
The device for measuring a force, and notably an inertial force corresponding to an acceleration, comprises a capacitive detector comprising two capacitors, the difference between the capacitances of which is a function of the force measured.The measuring device further comprises an electronic circuit permitting the creation of an output signal determined by a comparison of the value of the two capacitances. The signal is created in the form of a digital signal having a modulated pulse density.
Abstract:
Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.
Abstract:
A capacitive micro-sensor includes a sandwich of at least two silicon plates. A peripheral stripe of each side of one plate is assembled to a corresponding stripe of the opposing surface of an adjacent plate through an insulating layer. The lateral sides of the sandwich are provided with notches partially penetrating in each of the insulating layers, and are thicker than the thickness of the insulating layers.
Abstract:
An acceleration sensor includes a silicon substrate with a micromechanical bender bar constituting a testing mass having one end mounted the silicon substrate and a free end opposite the one end. A ferromagnetic core is mounted on the free end of the micromechanical bender bar. An excitation coil is supported on the ferromagnetic core for furnishing an inhomogeneous magnetic field when supplied with an alternating current. A cooled superconducting quantum interference detector (SQUID) arrangement is mounted adjacent the ferromagnetic core for detecting changes in the inhomogeneous magnetic field produced by the excitation coil and produces a useful signal in dependence of changes in the inhomogeneous magnetic field.