Abstract:
A semiconductor integrated circuit device including a plurality of memory cells, each having a storage MOSFET holding information in a gate of the storage MOSFET, a write transistor supplying a write information voltage corresponding to the information to the gate storage MOSFET, and a capacitor having first and second terminals. Word lines and data lines are coupled with the memory cells. The first capacitor terminal is coupled with one of the word lines and the second capacitor terminal is coupled with the gate of the storage MOSFET. In a read operation of the semiconductor integrated circuit device, the gate voltage of the storage MOSFET is boosted by a transition of the word line from a first voltage to a second voltage greater than the first voltage.
Abstract:
Semiconductor memory devices include memory cell transistors having spaced apart memory cell transistor source and drain regions, and a memory cell transistor insulated gate electrode that includes a memory cell transistor gate dielectric layer. Refresh transistors also are provided that are connected to the memory cell transistor insulated gate electrodes and are configured to selectively apply negative bias to the memory cell transistor insulated gate electrodes in a refresh operation. The refresh transistors include spaced apart refresh transistor source and drain regions, and a refresh transistor insulated gate electrode. The refresh transistor insulated gate electrode includes a refresh transistor gate dielectric layer that is of different thickness that the memory cell transistor gate dielectric layer. The refresh transistor gate dielectric layer may be thinner than the memory cell transistor gate dielectric layer.
Abstract:
A DRAM adopting a single-intersection memory cell array having randomly accessible data registers accessed whenever the chip is accessed externally. When data items recorded in the data registers are simultaneously written in the memory cell array, the data items are encoded. When data items are read from the memory cell array into the data registers, the data items are decoded. The margin is enhanced because array noise derived from reading is reduced. In addition, the access time of the DRAM is also reduced.
Abstract:
A Dynamic Random Access Memory (DRAM) performs read, write, and refresh operations. The DRAM includes a plurality of sub-arrays, each having a plurality of memory cells, each of which is coupled with a complementary bit line pair and a word line. The DRAM further includes a word line enable device for asserting a selected one of the word lines and a column select device for asserting a selected one of the bit line pairs. A timing circuit is provided for controlling the word line enable device, the column select device, and the read, write, and refresh operations in response to a word line timing pulse. The read, write, and refresh operation are performed in the same amount of time.
Abstract:
A semiconductor integrated circuit is disclosed, in which a memory is activated at high speed in commensurate with a high-speed logic circuit mounted with the memory in order to reduce the cost using a DRAM of a 3-transistor cell requiring no capacitor. A pair of data lines connected with a plurality of memory cells having the amplification function are set to different precharge voltage values, thereby eliminating the need of a dummy cell. The elimination of the need of the dummy cell unlike in the conventional DRAM circuit using a gain cell reduces both the required space and the production cost. A hierarchical structure of the data lines makes a high-speed operation possible. Also, a DRAM circuit can be fabricated through a fabrication process matched with an ordinary logic element.
Abstract:
A semiconductor memory device comprises a first transistor including a source region, a drain region, a first channel region of a semiconductor material formed on an insulating film and connecting the source region and the drain region, and a gate electrode for controlling potential of the first channel region; a second transistor including a source region, a drain region, a second channel region of a semiconductor material connecting the source region and the drain region, a second gate electrode for controlling potential of the second channel region, and a charge storage region coupled with the second channel region by electrostatic capacity; wherein the source region of the second transistor is connected to a source line, one end of the source or the drain region of the first transistor is connected to the charge storage region of the second transistor, the other end of the source or the drain region of the first transistor is connected to a data line.
Abstract:
A semiconductor memory device includes a sense line, a data line, a memory connected between the sense line and the data line having an active restoration function, and a sense amplifier connected between the sense line and the data line. The sense amplifier senses and inverts the data in the sense line, and outputs the inverted data to the data line. The polarity of the data on the sense line is opposite the polarity of the data on the data line, and the data in the data line are written to the memory. The semiconductor memory device is capable of performing an active restoration function which makes it possible to rewrite the result of sensing operations from the sense amplifier without the need for an additional circuit or operations.
Abstract:
A random access memory (RAM) circuit is coupled to a write control line, a read control line, and one or more bitlines, and includes a write switch having a control terminal and first and second terminals. The first terminal of the write switch is coupled to the one or more bitlines, and the control terminal of the write switch is coupled to the write control line. The circuit includes a charge-storage device having first and second terminals, wherein a first terminal of the charge-storage device is coupled to the second terminal of the write switch and a second terminal of the charge-storage device is coupled to the read control line. The circuit includes a read switch having a control terminal and first and second terminals. The control terminal of the read switch is coupled to the first terminal of the charge-storage device and is coupled to the second terminal of the write switch. The first terminal of the read switch is coupled to the one or more bitlines, and the second terminal of the read switch coupled to ground. The circuit may be implemented through a number of disclosed semiconductor memory devices.
Abstract:
A semiconductor integrated circuit device including a plurality of memory cells, each having a storage MOSFET holding information in a gate of the storage MOSFET, a write transistor supplying a write information voltage corresponding to the information to the gate storage MOSFET, and a capacitor having first and second terminals. Word lines and data lines are coupled with the memory cells. The first capacitor terminal is coupled with one of the word lines and the second capacitor terminal is coupled with the gate of the storage MOSFET. In a read operation of the semiconductor integrated circuit device, the gate voltage of the storage MOSFET is boosted by a transition of the word line from a first voltage to a second voltage greater than the first voltage.