Abstract:
A method and system for a cutout cover are provided. The cutout cover system includes a hollow head portion including a throat portion including an opening oriented toward a cutout when installed on the cutout and a tab portion extending from the hollow head portion in a first direction, the tab portion including a slit extending through the tab portion to the hollow head portion and dividing the tab portion into two joinable halves. The cutout cover also includes a nose portion extending from the hollow head portion in a second direction, the second direction opposite the first direction, the nose portion including a diverging cross-section along the nose portion from a distal end of the nose portion towards the head portion, the nose portion including a substantially smooth linear surface.
Abstract:
The present invention provides a method for manufacturing a metamaterial dielectric substrate, and a metamaterial dielectric substrate manufactured using the same. According to the metamaterial dielectric substrate and the manufacturing method thereof of the present invention, an arrangement rule of pin-shaped articles in a pin-shaped array may he predetermined during the manufacture, such that the formed metamaterial dielectric substrate has pinhole-shaped arrays arranged in a specific rule. Therefore, the metamaterial dielectric substrate may implement specific modulation functions on an electromagnetic wave such as electromagnetic wave divergence, convergence or deflection, thereby providing a more flexible design for function application of the metamaterial.
Abstract:
A conductive line shield structure includes a first conductive line and a shielding member. The first conductive line includes a conductive part and an insulative part. The shielding member is a sheet including an insulative base material and a metal foil, and is wrapped so as to enclose the first conductive line therein. One side end part of the shielding member overlaps an outside surface of the insulative base material so that one side end part of the insulative base material is in contact with the outside surface of the insulative base material.
Abstract:
Feedthrough assemblies and methods of manufacturing feedthrough assemblies are provided. Methods include molding a ferrule comprising titanium using metal injection molding and positioning the ferrule about at least a portion of an insulator, the insulator comprising alumina. Methods also include overmolding a ferrule about at least a portion of an insulator using metal injection molding, the ferrule comprising titanium and the insulator comprising alumina. Sintering densifies the ferrule and provides a hermetic seal between the ferrule and insulator. The insulator may be fired or unfired prior to sintering of the ferrule.
Abstract:
A method and system for a cutout cover are provided. The cutout cover system includes a hollow head portion including a throat portion including an opening oriented toward a cutout when installed on the cutout and a tab portion extending from the hollow head portion in a first direction, the tab portion including a slit extending through the tab portion to the hollow head portion and dividing the tab portion into two joinable halves. The cutout cover also includes a nose portion extending from the hollow head portion in a second direction, the second direction opposite the first direction, the nose portion including a diverging cross-section along the nose portion from a distal end of the nose portion towards the head portion, the nose portion including a substantially smooth linear surface.
Abstract:
One embodiment of the present disclosure is directed to an insulator comprising a ceramic composition, wherein the ceramic composition comprises about 25-60% SiO2; 15-35% R2O3, wherein the R2O3 is 3-15% B2O3 and 5-25% Al2O3; 4-25% MgO+0-7% Li2O, wherein the total of MgO+Li2O is between about 6-25%; 2-20% R2O, wherein the R2O is 0-15% Na2O, 0-15% K2O, 0-15% Rb2O; 0-15% Rb2O; 0-20% Cs2O; and 4-20% F; crystalline grains, wherein the crystalline grains are substantially oriented to extend in a first direction to provide improved insulating properties in a direction perpendicular to the first direction, wherein the first direction is circumferential and the direction perpendicular to the first direction is radial; and a first zone and a second zone, wherein the first zone is in compression and the second zone is in tension.
Abstract:
Disclosed is a crosslinkable mixture comprising a polyolefin, an alkoxysilane, an organopolysiloxane, a free radical initiator and a liquid polymer modifier. The organopolysiloxane contains two or more hydroxyl end groups. When the crosslinkable mixture is melt-shaped, a unique crosslinked composition is formed. The liquid polymer modifier improves flexibility of the melt-shaped article without decreasing dielectric strength.
Abstract:
A method of forming a polytetraflouroethylene (PTFE) insulation layer over a metallic conductor of a processed product includes the steps of extruding PTFE over a metallic conductor, and heating the PTFE to a temperature substantially below that of the sintering temperature of PTFE to form a sintered PTFE skin over an unsintered PTFE core.
Abstract:
A tubular elastic covering (730) for electric components (700), having on the whole predetermined values of mechanical and electric/environmental requirements, in which the mechanical requirements comprise expandibility and elastic recovery in a radial direction, and electric/environmental requirements comprise resistance to tracking and resistance to solar radiation, characterized in that said covering comprises an inner insulating layer (680) and an outer insulating layer (660) coaxial with each other, in superposed relationship and bonded together, made of blends of cross-linked polymeric material, in which the cross-linked blend forming the inner layer has predetermined values of said mechanical requirements and the cross-linked blend forming the outer layer has predetermined values of said electric/environmental requirements. Also described is a method of making this covering, a termination (700) for electric cables (605) comprising this covering and a method of mounting said termination to an electric cable.
Abstract:
A method of producing a polymer insulator having a core, an overcoat member arranged on the core, and a fitting member for securing the core at its both ends, wherein the core and the fitting member are secured under pressure at both ends of the core by contacting a ring-shaped protrusion portion arranged at both ends of the overcoat member to an open inner end of the fitting member, includes the steps of: forming the overcoat member on the core; forming the ring-shaped protrusion portion integrally with the overcoat member by processing an end portion of the overcoat member; and securing the fitting member. Moreover, an end processing apparatus utilized for the method of producing a polymer insulator includes: a core holder for holding a core; a rotation drive device arranged rotatably around the core holder at a center of a central axis of the core; and a whetstone having a shape for forming an end portion of an overcoat member of the polymer insulator, which is arranged to the rotation drive device rotatably around its center axis; wherein the whetstone itself is rotated and the rotated whetstone is rotated around the end portion of the overcoat member on the core held by the core holder, so that a protrusion portion is formed integrally with the end portion.