摘要:
A method of manufacturing a DC superconducting quantum interference device comprises forming an insulating film over a portion of a resistance film. A lower electrode superconducting film is formed over the resistance film and the insulating film. A barrier layer is formed on a portion of the lower electrode superconducting film. An upper electrode is formed sandwiching the barrier layer between the lower electrode superconducting film and the upper electrode, so as to form a Josephson junction. To reduce the number of manufacturing steps, the lower electrode superconducting film is photolithographically patterned and/or etched to simultaneously form an input coil, a feedback coil and the Josephson junction. In another embodiment, after forming the upper electrode, an insulating film is formed over at least a portion of the lower electrode superconducting film. A superconducting film is formed over the insulating film in contact with the upper electrode. To reduce the number of manufacturing steps, the superconducting film is photolithographically patterned and/or etched to simultaneously form a counter electrode, the input coil and the feedback coil.
摘要:
A circuit element for a superconducting integrated circuit is disclosed which comprises a plurality of Josephson junctions stacked vertically atop one another. Such a circuit element is capable of replacing single junctions and lateral arrays of junctions in many analog and digital applications. When operated digitally, the close proximity of the junctions to one another creates a "tight coupling" effect which permits the entire stack to switch as a single junction. Input (control) currents and output (bias) currents can be injected or taken out at any level or levels in the stack, thereby permitting excellent isolation, voltage gain, and the use of a single stack as a combination logic element. The use of tight coupling is extendable to lateral arrays as well. A method by which a circuit including vertical tunnel junctions may be fabricated is also disclosed.
摘要:
Microcircuits composed of a plurality of alternating conducting and insulating regions are formed in a substrate of an organic quasi-unidimensional conductor such as .DELTA..sup.2,2 bi-4,5-dimethyl-1,3-diselenolylidene upon irradiation of the substrate with a precise beam of electrons having an energy of at least 1 keV, preferably at least 8 keV, which forms the insulating regions. When exposed to cryogenic temperatures the non-irradated conducting regions become super conducting. Using electron beam irradiations, sub-micronic resolution as low as 100 .ANG. can be achieved. Microcircuits having Josephson junctions and superconducting quantum interference devices are described.
摘要:
Pinholes opened though insulating layers in Josephson integrated circuits are sealed by this post-etch anodization process. Josephson junction integrated circuits, in part, contain patterned metal films on an insulated groundplane. The patterns of conductors are created by adding a complete metal film over the insulating layers and subtractively etching to leave the desired conductor pattern. Pinholes in the underlying etch-stop insulating layer, in areas not covered by the remaining metal pattern, can be created during the subtractive etching process. Such pinholes may occur at sites made susceptible by contaminants, including flakes of process materials, which are present despite efforts to eliminate contaminants. Such pinholes provide unwanted conductive paths between the groundplane and subsequent metallization. Failures resulting from the effects of such unwanted conductive paths occur in a fashion not easily subject to identification, much less prevention. Process yields and circuit reliability are reduced. Once the integrated circuit is completed, repair is virtually impossible. This process creates seals in pinholes opened during the subtractive etching step for M2 metallization patterning, by growing niobium pentoxide specific to exposed groundplane niobium metal specific to the pinholes. The circuit wafer, after early process steps have resulted in a groundplane, insulating/spacing etch-stop layer and etched metallization pattern M2 (with possible pinholes in areas where M2 was etched away), is anodized in a medium of ammonium pentaborate dissolved in ethylene glycol for ten minutes, removed from the anodization medium, rinsed in deionized water, spun-dry and returned to the process as a pinhole-sealed intermediate process wafer at the M2 stage.
摘要:
An SNS microbridge superconductive device includes a substrate having first and second generally parallel surfaces which are separated by a generally perpendicular step. A first layer of superconductive material is formed on the first surface, and a second layer of superconductive material is formed on the second surface. A normal or non-superconductive material is formed over the two layers of superconductive material and the step. In fabricating the device, the step functions as a shadow mask during deposition of the superconductive material. The dimensions of the step can be accurately controlled, and the process utilizes conventional technology which is readily and uniformly reproducible.
摘要:
During the manufacture of Josephson superconducting devices, it is necessary to provide on a substrate a base electrode, a counter electrode and a small tunnel barrier area therebetween. A novel method of making all three of these active elements in the same vacuum chamber without having to remove the substrate from the vacuum chamber is provided so that the tunnel barrier area is accurately made to a predetermined size and without the danger of contamination. The novel structure is made as a substantially planarized laminate in the vacuum chamber and the tunnel barrier area is defined in a supplemental step.
摘要:
Planar superconducting-normal-superconducting (SNS) Josephson microbridgesnd superconducting quantum interference devices (SQUIDs) with bridge widths of about 0.2 microns and lengths of about 0.1 micron or less are fabricated with the aid of a technique referred to as "shadow evaporation". The procedure permits the submicron dimensions to be set by edge film thickness and slant evaporation angle, both of which can be accurately measured. Microbridges have been constructed with vanadium banks or electrodes and gold-titanium bridges, although other materials can be used including superconducting metals for the bridge. It is expected that a refined version of this technique would be suitable for repeated batch fabrication of single and multiple Josephson microbridges.
摘要:
During the process of vacuum deposition, metals and materials are evaporated at a point source so as to create a vapor which is dispersed isotropically. Layers of the evaporating material are deposited as built-up layers which have sharp vertical edges or steps at the areas defined by the photoresist stencil. When the line of sight of the depositing material is from an oblique angle, the layer being deposited can have a negative slope which appears as an undercut edge. The present invention employs a lift-off overhang photoresist stencil in conjunction with a relatively high pressure of inert gas in the vacuum chamber so as to promote collision of the evaporated atoms and molecules with the inert gas. The colliding atoms and molecules of the evaporating material no longer appear to be originating from a point source but appear to originate from an extended area in the end of the vacuum chamber and deposit under the overhang photoresist stencil so as to provide symmetrical positive slope step changes at the edges of the material being deposited.
摘要:
A surface reaction process for controlled oxide growth is disclosed using a directed, low energy ion beam for compound or oxide formation. The technique is evaluated by fabricating Ni-oxide-Ni and Cr-oxide-Ni tunneling junctions, using directed oxygen ion beams with energies ranging from about 30 to 180 eV. In one embodiment, high ion current densities are achieved at these low energies by replacing the conventional dual grid extraction system of the ion source with a single fine mesh grid. Junction resistance decreases with increasing ion energy, and oxidation time dependence shows a characteristic saturation, both consistent with a process of simultaneous oxidation and sputter etching, as in the conventional r.f. oxidation process. In contrast with r.f. oxidized junctions, however, ion beam oxidized junctions contain less contamination by backsputtering, and the quantitative nature of ion beam techniques allows greater control over the growth process.
摘要:
A lift-off mask for the patterned deposition of thin films comprises a three layer sandwich of photoresist-aluminum-photoresist on a substrate. Deposition occurs through an opening in the top photoresist layer and through larger size (i.e., undercut) openings in the aluminum and bottom photoresist layers. The top layer of photoresist remains on the mask during deposition and defines the pattern, the bottom photoresist is fully exposed and in the openings provides an undercut which prevents edge tearing during lift-off, and the aluminum layer (typically 50-200 Angstroms thick) protects the bottom layer of photoresist from dissolving during formation of the top photoresist layer. Also described is a technique in which the edges of thin films are tapered by depositing them from a direction oblique to the substrate surface and by rotating the substrate during deposition. These techniques are specifically discussed in the context of fabricating Josephson junction devices.