Abstract:
Methods and systems for binning defects on a wafer are provided. One method includes identifying areas in a design for a layer of a device being fabricated on a wafer that are not critical to yield of fabrication of the device and generating an altered design for the layer by eliminating features in the identified areas from the design for the layer. The method also includes binning defects detected on the layer into groups using the altered design such that features in the altered design proximate positions of the defects in each of the groups are at least similar.
Abstract:
Systems and methods for detecting defects on a wafer are provided. One method includes combining first image data and second image data, generated using different output generated using different values for focus of an inspection system, corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer and detecting defects on the wafer using the additional image data.
Abstract:
Systems and methods for detecting defects on a wafer are provided. One method includes generating output for a wafer by scanning the wafer with an inspection system using first and second optical states of the inspection system. The first and second optical states are defined by different values for at least one optical parameter of the inspection system. The method also includes generating first image data for the wafer using the output generated using the first optical state and second image data for the wafer using the output generated using the second optical state. In addition, the method includes combining the first image data and the second image data corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer. The method further includes detecting defects on the wafer using the additional image data.
Abstract:
Methods and systems for classifying defects detected on a reticle are provided. One method includes determining an impact that a defect detected on a reticle will have on the performance of a device being fabricated on a wafer based on how at least a portion of the reticle prints or will print on the wafer. The defect is located in the portion of the reticle. The method also includes assigning a classification to the defect based on the impact.
Abstract:
Various methods and systems for determining a defect criticality index (DCI) for defects on wafers are provided. One computer-implemented method includes determining critical area information for a portion of a design for a wafer surrounding a defect detected on the wafer by an inspection system based on a location of the defect reported by the inspection system and a size of the defect reported by the inspection system. The method also includes determining a DCI for the defect based on the critical area information, a location of the defect with respect to the critical area information, and the reported size of the defect.
Abstract:
Various computer-implemented methods for determining if actual defects are potentially systematic defects or potentially random defects are provided. One computer-implemented method for determining if actual defects are potentially systematic defects or potentially random defects includes comparing a number of actual defects in a group to a number of randomly generated defects in a group. The actual defects are detected on a wafer. A portion of a design on the wafer proximate a location of each of the actual defects in the group and each of the randomly generated defects in the group is substantially the same. The method also includes determining if the actual defects in the group are potentially systematic defects or potentially random defects based on results of the comparing step.
Abstract:
Various computer-implemented methods, carrier media, and systems for stabilizing output acquired by an inspection system are provided. One computer-implemented method includes determining a characteristic of output acquired for a wafer by an inspection system using an inspection recipe. The method also includes comparing the characteristic to a reference characteristic. In addition, if the characteristic is above the reference characteristic, the method includes altering the output acquired for the wafer such that the characteristic of the altered output substantially matches the reference characteristic thereby stabilizing the output acquired for the wafer to the reference characteristic.