Abstract:
A gain flattening device for an optical fiber amplifier. In the gain flattening device, a first end portion, having first and second ends, receives an amplified optical signal from a first amplification fiber via the first end. A second end portion, having third and fourth ends, outputs the amplified optical signal to a second amplification fiber via the fourth end. A first connector is included for connecting the first end to the third end. A second connector is included for connecting the second end to the fourth end. At least one reflective grating is further included with a predetermined gain curve at a predetermined wavelength band. An optical coupling portion couples the amplified optical signal from the first connector to the second connector in at least one coupling region where the first and second connectors are closer to each other than in any other area, and outputs part of the amplified optical signal reflected from the reflective grating via the second end.
Abstract:
Provided is a front-side filter which can be easily attached to a cover of a display device, but is difficult to detach from the cover even after long term use and further provided is a PDP device including the same filter. The front-side filter includes a filter base having at least one function among a near-infrared ray shielding function, and a neon light shielding function, and an electromagnetic wave shielding function; and an antireflective layer with an edge pattern, formed on a side of the filter base in such a way that the entire edge portion or a part of the edge portion of the filter base is exposed through the edge pattern to provide a fixing means formed in the edge pattern. The plasma display panel device includes a case, a cover for covering an upper surface of the case, a driving circuit board enclosed by the case, a panel assembly disposed on the driving circuit board and enclosed by the case, and a front-side filter including a filter base having at least one function among a near-infrared ray shielding function, and a neon light shielding function, and an electromagnetic wave shielding function; and an antireflective layer with an edge pattern, formed on a side of the filter base in such a way that the entire edge portion or part of the edge portion of the filter base is exposed through the edge pattern to provide a fixing means formed in the edge pattern.
Abstract:
Organometallic precursors may be utilized to form titanium silicon nitride films that act as heaters for phase change memories. By using a combination of TDMAT and TrDMASi, for example in a metal organic chemical vapor deposition chamber, a relatively high percentage of silicon may be achieved in reasonable deposition times, in some embodiments. In one embodiment, two separate bubblers may be utilized to feed the two organometallic compounds in gaseous form to the deposition chamber so that the relative proportions of the precursors can be readily controlled.
Abstract:
Provided are a video encoder, a video coding method, a video decoder, and a video decoding method for transmitting a compressed video signal based on a suitable compression method adaptively selected according to the environment. The video coder includes a first encoding portion that removes temporal and spatial redundancy of input video frames, quantizes transform coefficients generated by removing temporal and spatial redundancies from the input video frames, and generates a bitstream, a second encoding portion that removes spatial and temporal redundancy of input video frames, quantizes transform coefficients generated by removing spatial and temporal redundancies from the input video frames, and generates a bitstream, and a mode selector that compares the bitstreams input from the first encoding portion and the second encoding portion with each other, and outputs only the bitstream selected based on the comparison result. Therefore, video frames decoded with various resolution levels can be restored.
Abstract:
Polishing pads are provided that include a substrate for a polishing pad and a plurality of spaced apart members on the substrate and protruding from the substrate. The plurality of members include at least one abrasive layer and at least one chemical additive layer. Related methods of fabricating polishing pads are also provided herein.
Abstract:
A vehicle air duct assembly of an integrated beam structure includes a front beam member which is formed with an air vent duct for guiding air for the air conditioning of an automobile, a cowl cross bar for reinforcing the rigidity of the vehicle body and brackets for attaching a plurality of electrical equipment parts including an air bag; and a rear beam member which is coupled to the rear side of the front beam member and guides parts of air flowing through the air vent duct toward a front window glass of the automobile. According to the air duct, the number of parts is reduced, thus the manufacturing process is simplified, and a mixed material of steel and thermoplastic resin is used, thus the overall strength is increased and the weight is reduced.
Abstract:
A slurry composition useful for chemical mechanical polishing of the surface of a material layer, e.g., a silicon oxide layer, is disclosed. A first material surface which is exposed to the slurry exhibits hydrophilicity, while a second material layer, e.g., a polysilicon layer, the surface of which is also exposed to the slurry, exhibits hydrophobicity, and accordingly acts as a polishing stopping layer. The slurry composition consists essentially of water, abrasive grains, and a polymer additive having both hydrophilic and hydrophobic functional groups.
Abstract:
The present invention relates to non-selective slurries for chemical-mechanical polishing of a metal layer and a method for manufacturing thereof, and further to a method for forming a plug in an insulating layer on a wafer using such a slurry. More particularly, a slurry is provided for polishing chemically and mechanically simultaneously a metal layer, a barrier layer and an insulating layer used in a semiconductor integrated circuit, which maintains a pH in the range of weak acidity to weak alkalinity by including a first oxidizing agent to reduce a second oxidizing agent, the second oxidizing agent originally being reduced by oxidizing a metal layer. The second oxidizing agent is recycled by recovering the oxidizing power of the first oxidizing agent. An additive increases a polishing rate of the barrier layer and an abrasive is provided to the slurry in an aqueous medium. In this manner, slurry of the present invention can provide a flat finish to the surface of the insulating layer where a plug is formed by removing the metal layer, the barrier layer and the insulating layer simultaneously in one CMP process, since the polishing removal rates of the metal layer, the barrier layer and the insulating layer are substantially equal.
Abstract:
A method of operating a distributed processing system including a name node and a plurality of data nodes includes transmitting an address request packet from the name node to each of the plurality of data nodes, transmitting an address packet from each of the plurality of data nodes to the name node upon receiving the address request packet at each of the plurality of data nodes and upon each of the plurality of data nodes storing its own media access control (MAC) address in a payload of the address packet as a data node MAC address, determining, by the name node, a node configuration of the distributed processing system based on the address packet received from each of the plurality of data nodes, and processing data using a selected data node from among the plurality of data nodes based on the node configuration.
Abstract:
An electrode catalyst for a fuel cell includes a complex support including at least one metal oxide and carbon-based material; and a palladium (Pd)-based catalyst supported by the complex support. A method of manufacturing the electrode catalyst includes dissolving a precursor of a palladium (Pd)-based catalyst in a solvent and preparing a mixture solution for a catalyst; adding a complex support including at least one metal oxide and a carbon-based material to the mixture solution for a catalyst and stirring the mixture solution to which the complex support is added; drying the mixture solution for a catalyst, to which the complex support is added, in order to disperse the precursor of the Pd-based catalyst on the complex support; and reducing the precursor of the Pd-based catalyst dispersed on the complex support. A fuel cell includes the electrode catalyst.