Abstract:
An inspection method for inspecting a device mounted on a substrate, includes generating a shape template of the device, acquiring height information of each pixel by projecting grating pattern light onto the substrate through a projecting section, generating a contrast map corresponding to the height information of each pixel, and comparing the contrast map with the shape template. Thus, a measurement object may be exactly extracted.
Abstract:
A three-dimensional (3D) image display device including a display panel assembly including a display panel displaying an image and a timing controller, an integration controller transmitting an input image signal to the timing controller, a shutter member including a left eye shutter and a right eye shutter, a shutter timing determining unit receiving a shutter member control source signal from the integration controller or an outside source to generate shutter timing information, and a shutter timing controller receiving the shutter timing information to generate a shutter member control signal and transmitting the shutter member control signal to the shutter member, wherein an open time or a close time of the left eye shutter or the right eye shutter for a frame is based on the shutter timing information.
Abstract:
The invention relates to a device and method for detecting changes in background of successive images. More particularly, the invention relates to a device and method for detecting changes in background of successive images by obtaining vertically accumulated values and horizontally accumulated values from multiple binary images of previous image and current image, obtaining pairs of rows and pairs of columns based on the vertically accumulated values and horizontally accumulated values, and transforming pairs of rows and pairs of columns using Hough transformation.Also, the invention relates to an interface system including background changes detecting device and display device connected to the background changes detecting device.
Abstract:
A method for manufacturing a gallium nitride (GaN) wafer is provided. In the method for manufacturing the GaN wafer according to an embodiment, an etch stop layer is formed on a substrate, and a first GaN layer is formed on the etch stop layer. A portion of the first GaN layer is etched with a silane gas, and a second GaN layer is formed on the etched first GaN layer. A third GaN layer is formed on the second GaN layer.
Abstract:
A wire bonding joint structure of a joint pad in which electroless surface treatment plating layers of joint pads configured by a nickel layer/a palladium layer/a gold layer are connected to each other by a metal wire and when the metal wire is joined to the electroless surface treatment plating layer, a depth of the wire bonding pad formed by wedge deformation is 1.0 m or more.The electroless surface treatment layer of the joint pad can lower strength and hardness of the wire bonding pad of which the surface is treated to improve follow-up capability between a gold wire and the bonding pad, such that a joint area between the gold and the bonding pad is maximized, thereby increasing joinability at the wire bonding finish process by wedge pressure and greatly improving wire bonding workability.
Abstract:
The present invention provides a 2 stage rotary compressor (100) including a hermetic container (101), a 2 stage compression assembly provided in the hermetic container, wherein a low pressure compression assembly (120), a middle plate (130) and a high pressure compression assembly (140) are successively stacked from any one of upper and lower portions, a first discharge port (124) for discharging middle pressure refrigerant compressed in the low pressure compression assembly (120) a second discharge port (162p) for discharging high pressure refrigerant compressed in the high pressure compression assembly (130) and a third discharge port (172p) positioned at any one of the upper and lower portions of the 2 stage compression assembly to discharge high pressure refrigerant compressed in the 2 stage compression assembly to the hermetic container (101), wherein an area of the third discharge port (172p) is larger than 0.5 times of an area of the first discharge port and smaller than 1.0 times thereof. As a volume flow of refrigerant compressed in the low pressure compression assembly (120) determines a volume flow of refrigerant compressed in the entire 2 stage compression assembly, a size of the third discharge port discharging refrigerant compressed in the 2 stage compression assembly is preferably optimized at a ratio with respect to a size of the first discharge port (127). Therefore, the size of the third discharge port (172p) can be optimized to suppress noise of the compressor.
Abstract:
An operating method, a base station, and terminal of a cell of a first communication system for a handover between the first communication system and a second communication system are provided. The method includes, when a terminal initiates a handover between the first communication system and the second communication system, transmitting, by the base station, a message, requesting to measure a signal level of a downlink, to the terminal, when a signal level measured by the terminal falls below a preset threshold, requesting, by the base station, a handover to the second communication system over a core network, receiving, by the base station, a message, including radio channel parameters the that is required when the terminal accesses to the second communication system, from the second communication system, and forwarding, by the base station, the message, including the radio channel parameters of the second communication system, to the terminal.
Abstract:
A 3D measuring apparatus includes a stage, a projection portion, and an imaging portion. The projection portion includes first and second lights, first and second lattices, and first and second projection lenses. The imaging portion includes an imaging lens and a camera. The projection portion further includes a movement instrument which control the first and the second lattice simultaneously with predetermined n times.
Abstract:
A nonvolatile memory device includes global selection lines, local selection lines, a first selection circuit, and a second selection circuit. The local lines correspond respectively to the global selection lines. The first selection circuit is configured to connect to the global selection lines to select the global selection lines. The second selection circuit is connected between the global selection lines and the local selection lines and is configured to select the local selection lines. The first selection circuit is configured to select at least one global selection line, and the second selection circuit is configured to select the local selection lines corresponding to the selected global selection line while the at least one global selection line is continuously activated.
Abstract:
An energy recovery circuit for a plasma display panel (PDP) according to the present invention includes an energy recovery unit recovering and storing energy from the PDP; and a switching stabilizing unit electrically connected to the energy recovery unit to stabilize switching of a sustain discharge pulse applied to the PDP. The switching stabilization unit may include one diode, two switches and one capacitor for energy recovery, or include two switches and an external input voltage source that is an external voltage supply. According to the present invention, the difference of voltages applied to both drain and source terminals of a switch (SW2) for applying a sustain discharge voltage (Vsus) is minimized at the time when the switch (SW2) is switched, so that switching can be stabilized by preventing hard switching from being generated when the sustain discharge voltage is applied to a panel. Further, switching and electro-magnetic interference (EMI) noises of the circuit, generated due to the hard switching can be decreased, and therefore, driving reliability of the circuit can be improved.