Abstract:
A semiconductor memory device with a variable resistance element includes a plurality of active areas isolated from one another by an isolation layer formed in a substrate, a plurality of word lines crossing over the plurality of active areas, an auxiliary source line disposed between two selected word lines and commonly connected to at least two active areas among the plurality of active areas between the two selected word lines, and a plurality of contact plugs each connected to a corresponding active area.
Abstract:
A semiconductor package includes a semiconductor chip having an upper surface, side surfaces connected with the upper surface, and bonding pads formed on the upper surface. A first insulation layer pattern is formed to cover the upper surface and the side surfaces of the semiconductor chip and expose the bonding pads. Re-distribution lines are placed on the first insulation layer pattern and include first re-distribution line parts and second re-distribution line parts. The first re-distribution line parts have an end connected with the bonding pads and correspond to the upper surface of the semiconductor chip and the second re-distribution line parts extend from the first re-distribution line parts beyond the side surfaces of the semiconductor chip. A second insulation layer pattern is formed over the semiconductor chip and exposes portions of the first re-distribution line parts and the second re-distribution line parts.
Abstract:
The present invention relates to a method and to an apparatus for controlling the scheduling in a radio communication system, which comprise calculating a first resource value for a first data packet using packet information of the first data packet, determining an MCS level and a transmission power density for the first data packet and a second data packet using a resource allocation parameter for the first data packet and packet information of the second data packet, calculating a second resource value for the first data packet and the second data packet using the MCS level and the transmission power density determined in the previous step, and allocating the second resource value for the first data packet and the second data packet as an uplink resource if the second resource value is not greater than the total number of allocable resources of an uplink frame.
Abstract:
A stacked wafer level package includes a first semiconductor chip having a first bonding pad and a second semiconductor chip having a second bonding pad. Both bonding pads of the semiconductor chips face the same direction. The second semiconductor chip is disposed in parallel to the first semiconductor chip. A third semiconductor chip is disposed over the first and second semiconductor chips acting as a supporting substrate. The third semiconductor chip has a third bonding pad that is exposed between the first and the second semiconductor chips upon attachment. Finally, a redistribution structure is electrically connected to the first, second, and third bonding pads.
Abstract:
Disclosed is a method and an apparatus for transmitting and receiving data via a MAC protocol in a mobile communication system. The method includes inputting at least one Service Data Unit (SDU) containing transmission data through a corresponding logical channel and generating at least one first Protocol Data Unit (PDU) that includes said at least one SDU without including multiplexing information for identification of the logical channel, by a first transmission entity; acquiring the first PDU and generating a second PDU including the first PDU in a payload of the second PDU, by a second transmission entity that operates between the first transmission entity and a physical layer; inserting the multiplexing information for identification of the logical channel corresponding to said at least one first PDU into header information of the second PDU; and transmitting the second PDU through the physical layer. The method can reduce load due to additional processing, such as a bit operation or memory copying, in a receiver requiring high speed data transmission.
Abstract:
Provided is a method for manufacturing a nanowire using stress-induced growth. The method includes: providing a substrate with an intermediate layer formed thereon; forming thin film on the intermediate layer, wherein the thin film made of material having more than 2×10−6/° C. of thermal expansion coefficient difference from the intermediate layer; inducing tensile stress due to the thermal expansion coefficient difference between the thin film and the substrate by performing a heat treatment on the substrate with the thin film formed; and growing single-crystalline nanowire of the material by inducing compressive stress at the thin film through cooling of the substrate.
Abstract:
The present invention relates to an MFA (Metabolic Flux Analysis) information system using an XML (eXtensible Markup Language) and an operating method thereof. More specifically, the invention relates to an MFA information system and an operating method thereof, which generates, edits, stores and visualizes an MFA model feature and an MFA object using XML, and edits, stores and visualizes the result obtained by performing MFA based on the object. The present invention provides the MFA information system and method capable of generating, editing, storing and visualizing MFA model features and MFA objects using XML. Accordingly, MFA can be easily performed by utilizing advantages of XML, such as transplantation, reusability, deciphering, scalability, flexibility and effective data exchange, and thus the present invention can be applied to cell improvement using metabolic engineering.
Abstract:
Disclosed herein are a sensor network control method for data path establishment and recovery and a sensor network therefor. The sensor network control method includes the steps of (a) the sink node or a first sensor node creating an interest message, including information about a hop count between itself and the sink node, and transmitting the interest message to one or more neighboring nodes; (b) a second sensor node, which has received the interest message, creating a routing table using the hop count information of the interest message and information about the node having transmitted the interest message, (c) the second sensor node determining a data transmission path for data transmission to the sink node using the routing table; and (d) the second sensor node transmitting an interest message, including information about a hop count between itself and the sink node to at least one neighboring node.
Abstract:
Disclosed herein are a method of controlling Hierarchical Mobile IPv6 (HMIPv6) network-based handover and an Access Router (AR) and Mobile Node (MN) therefor. The method include the steps of a first AR, to which a MN is connected, receiving an L3 handover initiation message, including a Media Access Control (MAC) address of the MN and the ID of a target Base Station (BS); the first AR creating a Local Care-of Address (LCoA) based on the MAC address of the MN and the ID of the target BS, and performing Binding Update (BU) on a Mobility Anchor Point (MAP) using the created LCoA; when an L2 handover completion message is received from the target BS of the MN, a second AR creating an LCoA and transmitting the LCoA to the MN; and the MN receiving the LCoA from the second AR and configuring the received LCoA as its own LCoA.
Abstract:
A stacked semiconductor package and a method for manufacturing the same are presented which exhibit a reduced electrical resistance and an increased junction force. The semiconductor package includes at least two semiconductor chips stacked upon each other. Each semiconductor chip has a plurality of bonding pads formed on upper surfaces and has via-holes. First wiring lines are located on the upper surfaces of the semiconductor chips, on the surfaces of the via-holes, and respectively connected onto their respective bonding pads. Second wiring lines are located on lower surfaces of the semiconductor chips and on the surfaces of the respective via-holes which connect to their respective first wiring lines. The semiconductor chips are stacked so that the first wiring lines on an upper surface of an upwardly positioned semiconductor chip are respectively joined with corresponding second wiring lines formed on a lower surface of a downwardly positioned semiconductor chip.