Abstract:
Provided are methods for etching films comprising transition metals which help to minimize higher etch rates at the grain boundaries of polycrystalline materials. Certain methods pertain to amorphization of the polycrystalline material, other pertain to plasma treatments, and yet other pertain to the use of small doses of halide transfer agents in the etch process.
Abstract:
Methods of depositing a metal-containing film by exposing a substrate surface to a first precursor and a reactant, where one or more of the first precursor and the react comprises a compound having the general formula of one or more of M(XR3)2, M(XR3)3, M(XR3)4, M(XR3)5 and M(XR3)6, where M is selected from the group consisting of Al, Ti, Ta, Zr, La, Hf, Ce, Zn, Cr, Sn, V and combinations thereof, each X is one or more of C, Si and Ge and each R is independently a methyl or ethyl group and comprises substantially no β-H.
Abstract:
Methods for depositing a film comprising exposing a substrate surface to a metal precursor and a co-reactant to form a metal containing film are described. The metal precursor comprises a metal atom and an allyl ligand, the metal atom comprises one or more lanthanide.
Abstract:
Processing methods comprising exposing a substrate to an optional nucleation promoter followed by sequential exposure of a first reactive gas comprising a metal oxyhalide compound and a second reactive gas to form a metal film on the substrate.
Abstract:
Methods of depositing a metal-containing film by exposing a substrate surface to a first precursor and a reactant, where one or more of the first precursor and the react comprises a compound having the general formula of one or more of M(XR3)2, M(XR3)3, M(XR3)4, M(XR3)5 and M(XR3)6, where M is selected from the group consisting of Al, Ti, Ta, Zr, La, Hf, Ce, Zn, Cr, Sn, V and combinations thereof, each X is one or more of C, Si and Ge and each R is independently a methyl or ethyl group and comprises substantially no β-H.
Abstract:
Provided are methods for etching films comprising transition metals which help to minimize higher etch rates at the grain boundaries of polycrystalline materials. Certain methods pertain to amorphization of the polycrystalline material, other pertain to plasma treatments, and yet other pertain to the use of small doses of halide transfer agents in the etch process.
Abstract:
Provided are methods for etching films comprising transition metals. Certain methods involve activating a substrate surface comprising at least one transition metal, wherein activation of the substrate surface comprises exposing the substrate surface to heat, a plasma, an oxidizing environment, or a halide transfer agent to provide an activated substrate surface; and exposing the activated substrate surface to a reagent comprising a Lewis base or pi acid to provide a vapor phase coordination complex comprising one or more atoms of the transition metal coordinated to one or more ligands from the reagent. Certain other methods provide selective etching from a multi-layer substrate comprising two or more of a layer of Co, a layer of Cu and a layer of Ni.
Abstract:
Methods of selectively etching metals and metal nitrides from the surface of a substrate are described. The etch selectively removes metals and metal nitrides relative to silicon-containing layers such as silicon, polysilicon, silicon oxide, silicon germanium, silicon carbide, silicon carbon nitride and/or silicon nitride. The etch removes material in a conformal manner by including an oxidation operation which creates a thin uniform metal oxide. The thin uniform metal oxide is then removed by exposing the metal oxide to a metal-halogen precursor in a substrate processing region. The metal oxide may be removed to completion and the etch may stop once the uniform metal oxide layer is removed. Etches described herein may be used to uniformly trim back material on high aspect ratio features which ordinarily show higher etch rates near the opening of a gap compared to deep within the gap.
Abstract:
Methods are described herein for etching metal films which are difficult to volatize. The methods include exposing a metal film to a chlorine-containing precursor (e.g. Cl2). Chlorine is then removed from the substrate processing region. A carbon-and-nitrogen-containing precursor (e.g. TMEDA) is delivered to the substrate processing region to form volatile metal complexes which desorb from the surface of the metal film. The methods presented remove metal while very slowly removing the other exposed materials. A thin metal oxide layer may be present on the surface of the metal layer, in which case a local plasma from hydrogen may be used to remove the oxygen or amorphize the near surface region, which has been found to increase the overall etch rate.
Abstract:
Provided are methods for etching films comprising transition metals which help to minimize higher etch rates at the grain boundaries of polycrystalline materials. Certain methods pertain to amorphization of the polycrystalline material, other pertain to plasma treatments, and yet other pertain to the use of small doses of halide transfer agents in the etch process.