Abstract:
An apparatus includes an engine friction module in operative communication with an engine and structured to interpret engine operation data indicative of an engine friction amount, and a stop/start module structured to compare the engine operation data with predetermined protective criteria that includes an engine friction threshold and to turn off the engine for at least a portion of time based on the engine friction threshold exceeding the engine friction amount.
Abstract:
you and a Systems and methods for implementing a start-stop feature on a vehicle powered at least in party by an internal combustion engine are described. The method includes receiving, at an electronic control unit (“ECU”) of the vehicle, an indication that the vehicle is in line at a drive-thru. The method further includes determining, by the ECU, a number of start-stop events anticipated during the drive-thru. The method includes determining, by the ECU, an approximate stop time for each of the number of start-stop events. The method further includes determining, by the ECU, that a battery of the vehicle has enough remaining charge to power a plurality of vehicle components during implementation of the start-stop feature. The method includes implementing, by the ECU, the start-stop feature in which the internal combustion engine is turned off for at least a portion of the time when the vehicle is stopped.
Abstract:
Methods, systems, and apparatus of managing the lifespan of a battery are disclosed herein. A method comprises interpreting age data indicative of a current age of a battery, interpreting usage data indicative of a current usage of the battery, comparing the age data to the usage data, and allocating a propelling power from the battery in a hybrid electric vehicle (HEV) responsive to the comparison.
Abstract:
A method of controlling operation of a powered device is provided, comprising determining whether the device is experiencing a cyclical load profile including high load conditions and low load conditions, applying a first power component to the device using an engine, the first power component corresponding to an average power required by the cyclical load profile, and applying a second power component to the device using a motor/generator, a sum of the first power component and the second power component corresponding to a power required by the powered device during the high load conditions.
Abstract:
An alternator voltage may be controlled based on a proportional gain scheduling in response to an engine load of an internal combustion engine and/or a state of charge (SOC) deviation for a battery based on a target SOC of the battery and an actual SOC of the battery. The alternator voltage may be a voltage less than a current battery voltage under high engine loads to enable the battery to power an accessory system and the alternator voltage may be a voltage greater than a voltage of the battery under low engine loads or engine loads less than high engine loads to enable the alternator to charge the battery.
Abstract:
Various systems, methods, and apparatuses disclosed herein provide for receiving pressure data for an accumulator system, the pressure data providing an indication of a pressure in an accumulator tank of the accumulator system; receiving energy data, the energy data indicating an availability of free energy for use to charge the accumulator tank; and activating a charging source of the accumulator tank to charge the accumulator tank based on at least one of the pressure data and the energy data.
Abstract:
A method includes operating a hybrid power train having an internal combustion engine and an electrical torque provider. The method further includes determining a machine power demand and an audible noise limit value for the internal combustion engine. The method includes determining a power division description in response to the machine power demand and the audible noise limit value, and operating the internal combustion engine and the electrical torque provider in response to the power division description.
Abstract:
A method includes operating a hybrid power train having an internal combustion engine and an electrical torque provider. The method further includes determining a machine power demand and, in response to the machine power demand, determining a power division description. The method includes operating the internal combustion engine and the electrical torque provider in response to the power division description. The method further includes operating the internal combustion engine by starting the internal combustion engine in response to determining that a battery state-of-charge is below a predetermined threshold value.
Abstract:
Systems and apparatuses include a vehicle controller and a mobile battery charging device. The vehicle controller is engaged with a vehicle that includes a battery charging port coupled to a vehicle battery system. The controller is configured to communicate information indicative of a state of charge of a battery of the vehicle over a network. The mobile a battery charging device includes a drive system configured to propel the battery charging device, a charging interface configured to engage the battery charging port of the vehicle, and a controller. The controller is configured to receive the information of the state of charge of the battery system of the vehicle, determine a position of the vehicle, and command the drive system to move the battery charging device to align the charging interface with the battery charging port of the vehicle to charge the battery system of the vehicle.
Abstract:
Methods and systems for operating a vehicle on a reduced traction surface are disclosed. A controller of the vehicle obtains at least one of: ambient information or GPS information, determines a derate increment size based on the ambient or GPS information, imposes a sustained derate by applying a torque limit on a braking torque of the vehicle based on the derate increment size in response to detecting a traction control event. The controller also determines a verification period and a derate reduction period based on the ambient or GPS information to reduce the sustained derate in response to detecting a lack of traction control event during the verification period at a rate determined by the derate reduction period.