Abstract:
A method of transmitting broadcast signals includes forward error correction (FEC) encoding mobile data; interleaving the FEC encoded mobile data; encoding signaling information for the mobile data; mapping the interleaved mobile data and the encoded signaling information into a data unit, wherein the data unit includes a first region and a second region, wherein the first region is concatenated with the second region, wherein the first region includes known data and the encoded signaling information, and wherein the second region includes known data and the encoded mobile data; and transmitting the broadcast signals including the data unit, wherein the data unit is multiplexed with a data unit of main data in a specific time period, wherein the signaling information includes information of the data unit having the interleaved mobile data.
Abstract:
A digital broadcast transmitting/receiving system and a method for processing data are disclosed. The method for processing data may enhance the receiving performance of the receiving system by performing additional coding and multiplexing processes on the traffic information data and transmitting the processed data. Thus, robustness is provided to the traffic information data, thereby enabling the data to respond strongly against the channel environment which is always under constant and vast change.
Abstract:
A digital broadcasting system and a data processing method are disclosed. In an aspect of the present invention, the present invention provides a data processing method including receiving a broadcast signal in which main service data and mobile service data are multiplexed, demodulating the received broadcast signal, outputting demodulation time information of a specific position of a broadcast signal frame, and acquiring reference time information contained in the mobile service data frame, setting the reference time information to a system time clock at a specific time based on the demodulation time information and decoding the mobile service data according to the system time clock.
Abstract:
A method of processing a digital television (DTV) signal is disclosed. Herein, the DTV signal is generated by performing Reed-Solomon (RS) encoding on additional data, multiplexing the RS-encoded additional data with main data, RS encoding the multiplexed additional and main data, interleaving the RS-encoded additional and main data, trellis encoding the interleaved additional and main data, and transmitting a Radio Frequency (RF) DTV signal including the trellis-encoded additional and main data. The method to process the DTV signal includes receiving the DTV signal including the additional data multiplexed with the main data through an antenna, in which signaling information is periodically inserted in the additional data. The received DTV signal is demodulated including performing channel equalization on the demodulated DTV signal. Trellis decoding is performed on the channel-equalized DTV signal. Further, the additional data from the trellis-decoded DTV signal is extracted including removing dummy data from the extracted additional data.
Abstract:
A method processing broadcast data in a broadcast transmitter is described. The method may include randomizing broadcast service data, encoding the randomized broadcast service data at a code rate of D/E. D
Abstract translation:描述在广播发射机中处理广播数据的方法。 该方法可以包括随机化广播服务数据,以D / E的码率编码随机广播服务数据。 D
Abstract:
A digital broadcasting system and a data processing method are disclosed. The data processing method includes receiving a broadcast signal in which main service data and mobile service data are multiplexed, demodulating the broadcast signal to acquire fast-information-channel signaling information including reference time information for a system clock, and outputting demodulation time information of a specific position of a frame of the broadcast signal, decoding the fast-information-channel signaling information, and establishing the reference time information as the system clock at a demodulation time according to on the outputted demodulation time information and decoding the mobile service data according to the system clock.
Abstract:
Methods and apparatus for transmitting and receiving broadcast signals are provided. The method for transmitting a broadcast signal includes encoding mobile data for forward error correction (FEC), encoding signaling data, forming data groups including the encoded mobile data and the encoded signaling data and transmitting a signal frame that includes the data groups.
Abstract:
A method of processing additional information related to an announced service or content in a Non-Real Time (NRT) service and the broadcast receiver are disclosed herein. A method of providing a Non-Real Time (NRT) service in a broadcasting receiver includes receiving a service map table (SMT) and a first descriptor through a service signaling channel, identifying an image identifier and an image type of an image for an NRT service based upon the first descriptor, receiving the image via a flute session and displaying the image when corresponding service is played, wherein the image is logo or icon data for the NRT service. The method may further include connecting a service signaling channel, parsing the received SMT and the first descriptor, determining whether a service is the NRT service based upon the parsed SMT and storing the received image.
Abstract:
A DTV transmitting system includes an encoder, a randomizer, a block processor, a group formatter, a deinterleaver, and a packet formatter. The encoder codes enhanced data for error correction, permutes the coded data, and further codes the permuted data for error detection. The randomizer randomizes the coded enhanced data, and the block processor codes the randomized data at an effective coding rate of 1/H. The group formatter forms a group of enhanced data having data regions, and inserts the coded enhanced data into at least one of the data regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter formats the deinterleaved data into corresponding data bytes.
Abstract:
A digital broadcast system and method of processing data are disclosed. A channel equalizer includes a frequency domain converter receiving a known data sequence, when the known data sequence is periodically inserted and transmitted in general data, and converting the received data to frequency domain data, a CIR estimator using the data being received during a known data section and known data generated by a receiving system, so as to estimate a CIR, a CIR calculator interpolating or extrapolating the CIR estimated by the CIR estimator in accordance with characteristics of the general data being received, a coefficient calculator converting the CIR being outputted from the CIR calculator to a frequency domain CIR and calculating and outputting an equalization coefficient, and a distortion compensator multiplying the equalization coefficient calculated by the coefficient calculator with the data converted to frequency domain data by the frequency domain converter, thereby compensating channel distortion.