摘要:
When a semiconductor light emitting device or a semiconductor device is manufactured by growing nitride III-V compound semiconductor layers, which will form a light emitting device structure or a device structure, on a nitride III-V compound semiconductor substrate composed of a first region in form of a crystal having a first average dislocation density and a plurality of second regions having a second average dislocation density higher than the first average dislocation density and periodically aligned in the first region, device regions are defined on the nitride III-V compound semiconductor substrate such that the device regions do not substantially include second regions, emission regions or active regions of devices finally obtained do not include second regions.
摘要:
A nitride semiconductor laser device using a group III nitride semiconductor also as a substrate offers excellent operation characteristics and a long laser oscillation life. In a layered structure of a group III nitride semiconductor formed on a GaN substrate, a laser optical waveguide region is formed elsewhere than right above a dislocation-concentrated region extending so as to vertically penetrate the substrate, and electrodes are formed on the top surface of the layered structure and on the bottom surface of the substrate elsewhere than right above or below the dislocation-concentrated region. In a portion of the top surface of the layered structure and in a portion of the bottom surface of the substrate right above and below the dislocation-concentrated region, dielectric layers may be formed to prevent the electrodes from making contact with those regions.
摘要:
Oxygen can be doped into a gallium nitride crystal by preparing a non-C-plane gallium nitride seed crystal, supplying material gases including gallium, nitrogen and oxygen to the non-C-plane gallium nitride seed crystal, growing a non-C-plane gallium nitride crystal on the non-C-plane gallium nitride seed crystal and allowing oxygen to infiltrate via a non-C-plane surface to the growing gallium nitride crystal. Otherwise, oxygen can be doped into a gallium nitride crystal by preparing a C-plane gallium nitride seed crystal or a three-rotationally symmetric plane foreign material seed crystal, supplying material gases including gallium, nitrogen, and oxygen to the C-Plane gallium nitride seed crystal or the three-rotationally symmetric foreign seed crystal, growing a faceted C-plane gallium nitride crystal having facets of non-C planes on the seed crystal, maintaining the facets on the C-Plane gallium nitride crystal and allowing oxygen to infiltrate via the non-C-Plane facets to the gallium nitride crystal.
摘要:
An epitaxial wafer enabling epitaxial growth at a high temperature includes a compound semiconductor substrate containing As or P, and a covering layer including GaN; or InN; or AlN; or a nitride mixed-crystalline material containing Al, Ga, In and N. The covering layer covers at least a front surface and a back surface of the substrate. A method of preparing such an epitaxial wafer including steps of growing the covering layer at a growth temperature of at least 300.degree. C. and less than 800.degree. C. so as to cover at least the front and back surfaces of the substrate, and then annealing the substrate having the covering thereon layer at a temperature of at least 700.degree. C. and less than 1200.degree. C.
摘要:
A light emitting device having higher blue luminance is obtained. A gallium nitride compound layer is formed on a GaAs substrate, and thereafter the GaAs substrate is at least partially removed for forming the light emitting device. Due to the removal of the GaAs substrate, the quantity of light absorption is reduced as compared with the case of leaving the overall GaAs substrate. Thus, a light emitting device having high blue luminance is obtained.