摘要:
A method for making epitaxial structure is provided. The method includes providing a substrate having an epitaxial growth surface, placing a graphene layer on the epitaxial growth surface, and epitaxially growing an epitaxial layer on the epitaxial growth surface. The graphene layer includes a number of apertures to expose a part of the epitaxial growth surface. The epitaxial layer is grown from the exposed part of the epitaxial growth surface and through the aperture.
摘要:
A method for making an incandescent light source display is disclosed. Electrode pairs connected to the driving circuit are formed on a substrate. The electrode pairs are spaced from each other and located on pixel locations. Each electrode pair includes a first electrode and a second electrode. The electrode pairs are covered with a drawn carbon nanotube film. The drawn carbon nanotube film suspends between the first electrode and the second electrode and has the plurality of carbon nanotubes substantially aligned an X direction from the first electrode to the second electrode in each electrode pair. The drawn carbon nanotube film is then cut along the X direction to form at least one carbon nanotube strip in each pixel location. The drawn carbon nanotube film between any adjacent two pixel locations are broken off. The carbon nanotube strip is shrunk into a carbon nanotube wire.
摘要:
An epitaxial base is provided. The epitaxial base includes a substrate and a carbon nanotube layer. The substrate has an epitaxial growth surface and defines a plurality of grooves and bulges on the epitaxial growth surface. The carbon nanotube layer covers the epitaxial growth surface, wherein a first part of the carbon nanotube layer attached on top surface of the bulges, and a second part of the carbon nanotube layer attached on bottom surface and side surface of the grooves.
摘要:
The present application relates to a carbon nanotube field emitter. The carbon nanotube field emitter includes a carbon nanotube structure. The carbon nanotube structure includes a plurality of carbon nanotubes joined end-to-end by van der waals attractive force. The carbon nanotube structure has two joined portions, one portion is a triangle shaped carbon nanotube film, which is an electron emitting portion, the other portion is a carbon nanotube wire, which is a support portion.
摘要:
A field emission electron source includes a carbon nanotube micro-tip structure. The carbon nanotube micro-tip structure includes an insulating substrate and a patterned carbon nanotube film structure. The insulating substrate includes a surface. The surface includes an edge. The patterned carbon nanotube film structure is partially arranged on the surface of the insulating substrate. The patterned carbon nanotube film structure includes two strip-shaped arms joined at one end to form a tip portion protruded from the edge of the surface of the insulating substrate and suspended. Each of the two strip-shaped arms includes a plurality of carbon nanotubes parallel to the surface of the insulating substrate. A field emission device is also disclosed.
摘要:
A carbon nanotube micro-wave absorbing film is provided. The carbon nanotube micro-wave absorbing film includes a carbon nanotube film structure and a PVDF. The carbon nanotube film structure is a free-standing structure and includes a number of interspaces defined in the carbon nanotube film structure. At least a portion of the PVDF is located in the interspaces.
摘要:
A method for making a carbon nanotube composite film is provided. A PVDF solution is formed by dissolving a PVDF into a first solvent. A number of carbon nanotubes are provided and distributed into the PVDF solution to form a first suspension. The first suspension is transferred into a second solvent to form a second suspension. The second suspension is filtrated to obtain an intermediate, then the intermediate is dried. A solubility of first solvent in the second solvent is greater than a solubility of PVDF in the second solvent.
摘要:
A method for making a lithium ion battery electrode is provided. An electrode material layer including a plurality of electrode active material particles is provided. The electrode material layer includes a surface. A carbon nanotube layer is formed on the surface of the electrode material layer. The carbon nanotube layer consists of carbon nanotubes
摘要:
A light emitting diode including a substrate, a first semiconductor layer, an active layer, and a second semiconductor layer is provided. The first semiconductor layer includes a first surface and a second surface, and the first surface is connected to the substrate. The active layer and the second semiconductor layer are stacked on the second surface in that order, and a surface of the second semiconductor layer away from the active layer is configured as the light emitting surface. A first electrode electrically is connected with the first semiconductor layer. A second electrode is electrically connected with the second semiconductor layer. A number of three-dimensional nano-structures are located on the surface of the first surface of the first semiconductor layer and aligned side by side, and a cross section of each of the three-dimensional nano-structure is M-shaped.
摘要:
A light emitting diode including a substrate, a first semiconductor layer, an active layer, and a second semiconductor layer is provided. The first semiconductor layer includes a first surface and a second surface, and the first surface is connected to the substrate. The active layer and the second semiconductor layer are stacked on the second surface in that order, and a surface of the second semiconductor layer away from the active layer is configured as the light emitting surface. A first electrode electrically is connected with the first semiconductor layer. A second electrode is electrically connected with the second semiconductor layer. A number of three-dimensional nano-structures are located on the surface of the first surface of the first semiconductor layer and the light emitting surface, and a cross section of each of the three-dimensional nano-structures is M-shaped.