Abstract:
An object of the present invention is to provide a treatment liquid for a semiconductor device, which has excellent temporal stability of residue removing performance, and excellent anticorrosion performance for a treatment target. In addition, another object of the present invention is to provide a method for washing a substrate and a method for manufacturing a semiconductor device, each using the treatment liquid.The treatment liquid of an embodiment of the present invention is a treatment liquid for a semiconductor device, including at least one hydroxylamine compound selected from the group consisting of hydroxylamine and a hydroxylamine salt, at least one basic compound selected from the group consisting of an amine compound other than the hydroxylamine compound and a quaternary ammonium hydroxide salt, and at least one selected from the group consisting of a reducing agent other than the hydroxylamine compound and a chelating agent, and having a pH of 10 or more.
Abstract:
A treatment liquid is a treatment liquid for a semiconductor device, containing a fluorine-containing compound, a corrosion inhibitor, and calcium, in which the mass content ratio of the calcium to the fluorine-containing compound in the treatment liquid is 1.0×10−10 to 1.0×10−4.
Abstract:
An object of the present invention is to provide a composition including hydrogen peroxide, which can be used for semiconductor device manufacturing and which exhibits an excellent storage stability and has a reduced effect of defects on a semiconductor substrate. Further, another object of the present invention is to provide a method for producing the composition including hydrogen peroxide, and a composition reservoir for storing the composition.The composition of the present invention includes hydrogen peroxide, an acid, and a Fe component, in which a content of the Fe component is 10−5 to 102 in terms of mass ratio with respect to the content of the acid.
Abstract:
A coloring composition includes colorants, polymerizable compounds, and a resin, in which a ratio P/M of a mass P of the colorants to a mass M of the polymerizable compounds is 0.05 to 0.35, a content of the polymerizable compounds is 25 to 65 mass % with respect to a total solid content of the coloring composition, a ratio A/B of a minimum value A of an absorbance in a wavelength range of 400 nm or longer and shorter than 580 nm to a minimum value B of an absorbance in a wavelength range of 580 nm to 770 nm is 0.3 to 3, and a ratio C/D of a minimum value C of an absorbance in a wavelength range of 400 nm to 750 nm to a maximum value D of an absorbance in a wavelength range of 850 nm to 1300 nm is 5 or higher.
Abstract:
A coloring composition includes colorants and a resin, in which a ratio A/B of a minimum value A of an absorbance in a wavelength range of 400 to 830 nm to a maximum value B of an absorbance in a wavelength range of 1000 to 1300 nm is 4.5 or higher.
Abstract:
An etching method containing the step of processing a substrate having a first layer containing titanium nitride (TiN) and a second layer containing a transition metal by bringing an etching liquid into contact with the substrate and thereby removing the first layer, wherein the first layer has a surface oxygen content from 0.1 to 10% by mole, and wherein the etching liquid comprises an ammonia compound and an oxidizing agent, and has a pH of from 7 to 14.
Abstract:
A method of producing a semiconductor substrate product, having the steps of: providing an etching liquid containing water, a hydrofluoric acid compound, and a water-soluble polymer; and applying the etching liquid to a semiconductor substrate, the semiconductor substrate having a silicon layer and a silicon oxide layer, the silicon layer containing an impurity, and thereby selectively etching the silicon oxide layer.