Abstract:
According to an embodiment, a solid-state imaging device includes: an imaging element formed on a semiconductor substrate; a first optical system configured to focus an image of a subject on an imaging plane; a second optical system including a microlens array including a plurality of microlenses corresponding to the pixel blocks, and re-focusing the image of the imaging plane onto the pixel blocks corresponding to the respective microlenses; a first filter placed on the second optical system, and including a plurality of first color filters corresponding to the microlenses; and a second filter placed on the imaging element, and including a plurality of second color filters corresponding to the first color filters of the first filter. The first and second filters are designed so that the first and second color filters deviate to a periphery of the imaging area, the deviation becoming larger toward the periphery of the imaging area.
Abstract:
An integrated semiconductor device includes a plurality of semiconductor elements having different integrated element circuits or different sizes; an insulating material arranged between the semiconductor elements; an organic insulating film arranged entirely on the semiconductor elements and the insulating material; a fine thin-layer wiring that arranged on the organic insulating film and connects the semiconductor elements; a first input/output electrode arranged on an area of the insulating material; and a first bump electrode formed on the first input/output electrode.
Abstract:
A semiconductor memory includes a semiconductor substrate, a buried insulating film formed on a part of an upper surface of the semiconductor substrate, and a semiconductor layer formed on another part of the upper surface of the semiconductor substrate. Each of the memory cell transistors comprises a first-conductivity-type source region, a first-conductivity-type drain region, and a first-conductivity-type channel region arranged in the semiconductor layer in the column direction, and a gate portion formed on a side surface of the channel region in the row direction.
Abstract:
A sensor device for detecting a positional relationship between a first member and a second member, includes a first electrode provided on a surface of the first member and supplied with an alternating signal of a first frequency, a second electrode provided on a surface of the second member and supplied with an alternating signal of a second frequency, and a beat detector which detects a beat frequency component corresponding to a difference between the first and second frequencies indicative of the positional relationship between the first member and the second member, when the positional relationship between the first and second members changes to cause the first electrode to approach the second electrode.
Abstract:
A power amplifier includes: a plurality of field effect transistors connected in parallel and each having a first and second ends, the first end being connected to ground; an amplifying unit which includes at least one of an inductor, a capacitor and a band pass filter and has a third and fourth ends, the third end being connected to the second ends of the field effect transistors, and the fourth end outputting an amplified output signal; and an amplitude controller which sends control signals respectively to gates of the field effect transistors to turn on or off the field effect transistors based on an address signal for performing selection on the field effect transistors and a clock signal. Channel widths of the field effect transistors are different from each other.
Abstract:
A power supply apparatus which supplies power to an amplifier, includes: a regulator stabilizing a voltage of the power supplied to the amplifier; and a stabilizing controller obtaining an amplitude level of an input signal inputted to the amplifier and controlling a stability of the voltage by the regulator based on the amplitude level.
Abstract:
A sensor device which detects a positional relationship between an first member and second member, includes a signal source generating an electrical signal, a first electrode receiving the electrical signal and storing an electrical charge at a first part on the first member, a second electrode inducing an electrical charge at the second part on the second member, a third electrode inducing an electrical charge at the third part on the second member, a fourth electrode inducing an electrical charge at the fourth part on the first member, a reference electrode disposed at a fifth part on the second member to be connected to a reference voltage point, a fifth electrode inducing an electrical charge at the sixth part on the first member, and a differential amplifier amplifying a voltage difference between the fourth electrode and the fifth electrode and outputting a difference signal.
Abstract:
A power amplifier includes: a first multi-finger FET formed on a semiconductor substrate; a second multi-finger FET formed on the semiconductor substrate; a first temperature detector which detects a channel temperature of the first FET; a second temperature detector which detects a channel temperature of the second FET; a third temperature detector which detects a temperature of the semiconductor substrate; a first detection circuit detecting a difference between an output of the first temperature detector and an output of the third temperature detector and converting the difference to thermoelectromotive force; a second detection circuit detecting a difference between an output of the second temperature detector and the output of the third temperature detector and converting the difference to thermoelectromotive force; and a comparator comparing outputs of the first and second detection circuits with each other to turn on one of the first and second switches and turn off the other.
Abstract:
A MEMS apparatus includes a MEMS unit formed on a semiconductor substrate and a cover provided with a pore and serving to seal the MEMS unit. The pore is sealed with a sealing material shaped in a sphere or a hemisphere.
Abstract:
It is made possible to provide a highly integrated, thin apparatus can be obtained, even if the apparatus contains MEMS devices and semiconductor devices. A semiconductor apparatus includes: a first chip comprising a MEMS device formed therein; a second chip comprising a semiconductor device formed therein; and an adhesive layer bonding a side face of the first chip to a side face of the second chip, and having a lower Young's modulus than the material of the first and second chips.