Abstract:
A surgical system includes a flexible steerable needle and a shape sensor for measuring the shape of the needle. The surgical system can be manual (e.g., laparoscopic), robotic, or any combination of the two. By directly measuring the shape of the needle, complex and potentially inaccurate modeling of the needle to determine trajectory and insertion depth can be avoided in favor of much more robust direct measurement and modeling of needle shape and/or pose.
Abstract:
A surgical system includes a flexible steerable needle and a shape sensor for measuring the shape of the needle. The surgical system can be manual (e.g., laparoscopic), robotic, or any combination of the two. By directly measuring the shape of the needle, complex and potentially inaccurate modeling of the needle to determine trajectory and insertion depth can be avoided in favor of much more robust direct measurement and modeling of needle shape and/or pose.
Abstract:
A minimally-invasive surgical system includes a slave surgical instrument having a slave surgical instrument tip and a master grip. The slave surgical instrument tip has an alignment in a common frame of reference and the master grip, which is coupled to the slave surgical instrument, has an alignment in the common frame of reference. An alignment error, in the common frame of reference, is a difference in alignment between the alignment of the slave surgical instrument tip and the alignment of the master grip. A ratcheting system (i) coupled to the master grip to receive the alignment of the master grip and (ii) coupled to the slave surgical instrument, to control motion of the slave by continuously reducing the alignment error, as the master grip moves, without autonomous motion of the slave surgical instrument tip and without autonomous motion of the master grip.
Abstract:
A surgical instrument is provided that includes a first input mechanism having axial slots formed in a periphery and a second input mechanism having helical slots formed in a surface. The instrument also includes an insert having pins extending from a surface thereof, the insert coupled to the second input mechanism such that the one or more pins extend into the helical slots, and a surgical device coupled to an end. The surgical device is moved in a first degree of freedom in response to a mechanical driving force applied to both the first input mechanism and the second input mechanism, respectively, and the surgical device is moved in a second degree of freedom in response to a mechanical driving force applied to the second input mechanism while the first input mechanism is held stationary.
Abstract:
A system comprises a processor and a memory having computer readable instructions stored thereon, which, when executed by the processor, cause the system to display a surgical environment image, which includes an image from an imaging system and an interaction image. The interaction image displays a body part of a user and an input control device. The instructions further cause the system to display, in the interaction image, a movement of the body part as the body part interacts with the input control device. The movement causes the body part to actuate the input control device. The instructions further cause the system to receive an input from the input control device in response to the actuation of the input control device. The instructions further cause the system to adjust a setting or a position of a component of a surgical system based on the received input.
Abstract:
A method is provided for intra-surgical use of a surgical patient health record in a teleoperated surgical system that includes a surgical instrument and a surgical instrument actuator, comprising: receiving user input commands to control movement of a robotic surgical instrument; tracking robotic surgical instrument actuator state in response to the user input commands; and transitioning robotic surgical instrument actuator state to a safety mode in response to the robotic surgical instrument transitioning to a prescribed actuator state.
Abstract:
A system is configured to direct a manipulator cart to navigate, in a first bifurcated navigation control mode, from an initial location to an intermediate location; and direct the manipulator cart to navigate, in a second bifurcated navigation control mode, from the intermediate location to a target location. In the first bifurcated navigation control mode, the system is configured to autonomously control a steering of the manipulator cart while allowing operator control of a propulsion of the manipulator cart using a primary control interface configured to facilitate operator control of both steering and propulsion of the manipulator cart. In the second bifurcated navigation control mode, the system is configured to autonomously control the steering of the manipulator cart while allowing operator control of the propulsion of the manipulator cart using a secondary control interface configured to facilitate operator control of the propulsion and not the steering of the manipulator cart.
Abstract:
A mixed reality presentation system identifies an operating condition associated with an operation performed on a body while an active imaging device captures imagery of an internal view of the body. The mixed reality presentation system also determines, based on the identified operating condition, that a display device is to toggle a display of a shape overlay that is displayed together with an external view of the body and that is indicative of an extent of a field of view of the active imaging device relative to the body. Based on the determining that the display device is to toggle the display of the shape overlay, the mixed reality presentation system directs the display device to toggle the display of the shape overlay. Corresponding systems and methods are also disclosed.
Abstract:
A robotic system may comprise a first robotic arm operatively coupleable to a first tool. The first tool has a first working end. The system may also comprise an image capture device, a display, and a processor. The processor may be configured to cause an image of a work site, which was captured by the image capture device from a perspective of an image reference frame, to be displayed on the display. The image of the work site includes an image of the first working end of the first tool. The processor may also determine a position of the first working end of the first tool in the image of the work site and render a tool information overlay at the position of the first working end of the first tool in the image of the work site. The tool information overlay visually indicates state information for the first tool. The processor may also change the tool information overlay while the first tool is in a first operational state by changing a brightness of the tool information overlay.
Abstract:
A method is performed by a computing system. The method includes receiving image data from an imaging device, and determining, using the image data, a plurality of image-space tools, each image-space tool associated with a tool of a plurality of tools, each tool controlled by a manipulator of a plurality of manipulators. The method further includes determining a first correspondence between a first image-space tool of the plurality of image-space tools and a first tool of the plurality of tools based on a first disambiguation setting associated with the first tool.