Abstract:
A method for providing assistance to a driver of a vehicle, the vehicle including a driver assistance system that enables at least temporary autonomous driving, and that, after the termination of the autonomous driving, requests the driver to take over at least the lateral guidance of the vehicle via a signal. It is further provided that the steering of the vehicle is stiffened for a specified time span after the request to take over the lateral guidance. A computer program and a device that are set up to carry out the method, are also described.
Abstract:
A road-surface-condition estimation device is configured by a tire-side device and a vehicle-side device so as to grasp a road surface condition based on road surface condition data transmitted from a tire-side device. As a result, the road surface condition or a road surface μ of a traveling road surface of a vehicle can be accurately detected, and a more accurate lane keeping control can be performed according to the detection result. In particular, since the tire-side device estimates the road surface condition by detecting the vibration of a ground contact surface of the tire, the road surface condition can be estimated more accurately. Therefore, the more accurate lane keeping control can be performed.
Abstract:
Disclosed is a driving support apparatus for setting a traveling lane in which a vehicle can travel on the basis of a road marking to indicate a lane boundary or a traveling-prohibited region and performing support by combining steering of the vehicle and deceleration of the vehicle so that the vehicle is allowed to travel in the traveling lane if the vehicle is to be departed from the traveling lane, wherein the steering of the vehicle and the deceleration of the vehicle, which are to be performed when the support is performed so that the vehicle is allowed to travel in the traveling lane, are individually controlled depending on a difference ΔY between a target yaw rate Ytrg and an actual yaw rate Yrea if the actual yaw rate Yrea is smaller than the target yaw rate Ytrg in order not to allow the vehicle to exceed the traveling lane.
Abstract:
An emergency in-lane steering assist system for use during a braking event comprises an object sensor for detecting the presence of an object in front of a motor vehicle and providing data from which the distance from the object to the motor vehicle is determined and a velocity sensor providing data from which the forward velocity of the motor vehicle is determined. A controller in communication with the object sensor and the velocity sensor calculates a Time to Contact (TTC) with the detected object and a steering system is responsive at least in part to operation by the controller. If the calculated TTC is less than a predetermined TTC, the controller provides a lateral steering input during the braking event to reduce the linear distance traveled by the motor vehicle relative to a predetermined path in the lane.
Abstract:
An unmanned autonomous traveling service apparatus and method based on driving information database that allows an unmanned autonomous traveling vehicle to be autonomously operated stably without performing a large scale computing process in real time by allowing the unmanned autonomous traveling vehicle to be autonomously operated based on driving information generated in a database and allowing the unmanned autonomous traveling vehicle to be autonomously operated based on an installed sensor at the time of a traffic lane change or an unexpected situation. In particular, the driving information is collected from drivers throughout the world to create the database for the driving information.
Abstract:
A coordinate-control-gain calculation section 61 calculates a coordinate-control final control torque T_C required to properly control the traveling behavior of a vehicle, and determines a coordinate control gain Kg on the basis of the magnitude of this torque T_C. An arbitration-request determination section 62 determines the value of an arbitration request flag FRG_A on the basis of the magnitude of the torque T_C and the value of a flag FRG_L output so as to properly control the traveling behavior of a vehicle. On the basis of the value of the flag FRG_A and the magnitude of the coordinate-control arbitration torque Tr determined by use of the gain Kg, an arbitration section 63 selects the torque T_C or the torque Tr to be output as a post-arbitration control torque T_F. A post-arbitration drive control section 64 supplies to an electric motor a drive current corresponding to the determined torque T_F.
Abstract:
In a method for the operation of a transverse guiding driver assist system of a motor vehicle, a road banking information is ascertained as a function of a change in a deviation of a transverse course of a road surface from a horizontal. A future road course is determined from environmental data and/or operating data of a motor vehicle, using the road banking information. A lateral track deviation is determined as a result of a change of a road banking, using the road banking information. At least one transverse guiding parameter is established from the future road course and the road banking information to determine a steering intervention. The lateral track deviation is then corrected by using the transverse guiding parameter.
Abstract:
A conventional brake control can generate only a small yaw moment compared with a steering control, so that reliable avoidance of obstacles cannot be obtained. With a steering control, the driver gets behind the wheel every time when crossing a lane and has an uncomfortable feeling. To solve these problems, a traveling aid device comprises: a detection unit for detecting the traveling state of a vehicle, the position of a lane marker, and the positions and types of obstacles around the vehicle; a calculation unit for calculating, based on the traveling state of the vehicle, the position of the lane marker, and the positions and types of the surrounding obstacles, a target yaw moment so as to prevent a departure from the lane marker and a collision with the surrounding obstacles; and a distribution unit for distributing, based on at least one of the traveling state of the vehicle, the position of the lane marker, and the positions and types of the surrounding obstacles, the target moment to a first actuator for controlling the driving/braking force and a second actuator for controlling the steering.
Abstract:
A vehicle travel support device capable of properly controlling the operation of a steering device and the like from the viewpoint of supporting the travel of a vehicle stably even in a situation where a travel area is inappropriately demarcated by right and left lane marks at both sides, wherein a virtual travel area can be set as a travel area when a first condition is satisfied, that is, when the separation between the right and the left lane marks in width direction of a road increases to an inappropriate extent from the viewpoint of demarcating the travel area because the separation therebetween gradually increases as the distance from the vehicle increases. The operation of a steering device and the like is so controlled that the vehicle will not depart from the virtual travel area set as the travel area.
Abstract:
Method for lane keeping support in motor vehicles, in which a setpoint value for the lateral position of the vehicle is determined, the actual position of the vehicle in relation to the boundaries of the lane in which the host vehicle is traveling is detected by a sensor device and an output signal for the lane keeping support is calculated by a setpoint-actual comparison, wherein objects are tracked in at least one neighboring lane and a setpoint value for the lateral position is varied as a function of tracking data of these objects.