Abstract:
Lubricating compositions are provided. The lubricating compositions can include a lubricating agent, a flexibilizer, a dispersing agent, and a charge imparting agent. The lubricating compositions can optionally include a carrier.
Abstract:
A friction control composition having high and positive factional properties for sliding steel surfaces includes a water insoluble hydrocarbon that enables a reduced water content, a rheological additive, a freezing point depressant, a friction modifier, and a lubricant.
Abstract:
A composition that includes solid lubricant nanoparticles and an organic medium is disclosed. Also disclosed are nanoparticles that include layered materials. A method of producing a nanoparticle by milling layered materials is provided. Also disclosed is a method of making a lubricant, the method including milling layered materials to form nanoparticles and incorporating the nanoparticles into a base to form a lubricant.
Abstract:
Disclosed herein is a lubrication device comprising a solid lubricant disposed between and in contact with a first electrode and a second electrode dimensioned and arranged such that application of an electric potential between the first electrode and the second electrode sufficient to produce an electric arc between the first electrode and the second electrode to produce a plasma in an ambient atmosphere at an ambient pressure which vaporizes at least a portion of the solid lubricant to produce a vapor stream comprising the solid lubricant. Methods to lubricate a surface utilizing the lubrication device in-situ are also disclosed.
Abstract:
A metal/plastic slide bearing composite material (2) has a metallic support layer (4), especially of steel, and a porous carrier layer (6), especially a carrier layer (6) applied by sintering from metallic particles (7). A polymer-based slide layer material (8) completely fills the pores of the carrier layer (6) and has fillers that improve the tribological properties. The polymer basis is PTFE. The sliding layer material (8) has 0.1-5% by mass of carbon nanotubes with an external tube diameter of
Abstract:
A method for producing and commissioning a transmission with a water-based lubricant comprises the following steps. A mixture of a vaporizable liquid, a comminuted solid lubricant and a preserving agent (22) are applied (21) to the finished rotary parts (20) and then dried (23), whereby a coating forms on them. The rotary parts with the coating are installed in the transmission housing and the assembled transmission is filled with a cooling liquid (25), which is primarily essentially water. The transmission is put into operation for the first time (27), wherein the lubricant for the further operation is only formed by abrasion of the rotary parts and distribution of the abraded matter in the cooling liquid. The transmission is then ready for operation (28). Furthermore, a lubricant produced by this method is described.
Abstract:
A positive friction powder additive for modifying existing brake pad or brake shoe formulations to reduce squealing associated with braking. The positive friction powder additive comprises a friction modifier and a solid lubricant and is comprised of talc, barytes, aluminum oxide, and molybdenum disulphide. The positive friction powder additive can be formulated with binders and fillers to prepare a non-metallic brake pad or brake shoe formulation and a non-metallic brake pad or brake shoe. The positive friction powder additive, non-metallic brake pad or brake shoe formulation, and non-metallic brake pad or brake shoe have high and positive frictional characteristic which reduces vibrations and noise by reducing stick/slip oscillations by changing friction from negative to positive.
Abstract:
It is an object of the invention to provide a sliding material composition and a sliding member capable of achieving low friction property at starting time and during sliding and also being excellent in abrasion resistance, especially when a counterpart sliding member is a rubber-based material. The invention relates to a sliding material composition for use in a sliding member whose counterpart sliding member is configured of rubber, the sliding material composition comprising a binder resin, 5 to 25 vol % of an Nω-monoacyl basic amino acid, 5 to 25 vol % of molybdenum disulfide, and 5 to 20 vol % of polytetrafluoroethylene.
Abstract:
An anti-seizing agent including: a first solid lubricant containing at least one of bismuth and a bismuth compound; and a second solid lubricant containing at least one of graphite, molybdenum disulfide and boron nitride. The anti-seizing agent satisfies the relationships 20 weight %≦a≦90 weight % and 10 weight %≦d≦80 weight %, in which a sum of the contents of the first solid lubricant and the second solid lubricant in the anti-seizing agent is taken as 100 weight %, and a represents a content of the first solid lubricant and d represents a content of the second solid lubricant.
Abstract translation:一种防结块剂,包括:含有铋和铋化合物中的至少一种的第一固体润滑剂; 和含有石墨,二硫化钼和氮化硼中的至少一种的第二固体润滑剂。 防结块剂满足20重量%@ a @ 90重量%和10重量%@ d @ 80重量%的关系,其中第一固体润滑剂和第二固体润滑剂的含量之和在防卡塞 取代为100重量%,a表示第一固体润滑剂的含量,d表示第二固体润滑剂的含量。
Abstract:
A telescopic shaft for vehicle steering installed in a vehicle steering shaft. A male shaft and a female shaft are non-rotatably and slidably fitted to each other and an outer peripheral portion of the male shaft and an inner peripheral portion of the female shaft come in contact with each other to transmit a torque during rotation. A grease composition which has an apparent viscosity of 400 to 750 Pa·s (25° C.) at a shear rate of 10 sec−1 as defined in JIS K2220 is enclosed in a gap between the outer peripheral portion of the male shaft and the inner peripheral portion of the female shaft.