Abstract:
The disclosure provides microstructured articles and methods useful for detecting an analyte in a sample. The articles include microwell arrays. The articles can be used with an optical system component in methods to detect or characterize an analyte.
Abstract:
In one aspect an imaging system includes: an illumination system including an array of light sources; an optical system including one or more lens arrays, each of the lens arrays including an array of lenses, each of the lenses in each of the one or more lens arrays in alignment with a corresponding set of light sources of the array of light sources; an imaging system including an array of image sensors, each of the image sensors in alignment with a corresponding lens or set of lenses of the one or more lens arrays, each of the image sensors configured to acquire image data based on the light received from the corresponding lens or set of lenses; a plate receiver system capable of receiving a multi-well plate including an array of wells, the plate receiver system configured to align each of the wells with a corresponding one of the image sensors; and a controller configured to control the illumination of the light sources and the acquisition of image data by the image sensors, the controller further configured to perform: an image acquisition process including a plurality of scans, each scan associated with a unique pattern of illumination, each of the image sensors configured to generate an image for a respective one of the wells during each scan; and an image reconstruction process during which the controller performs a fourier ptychographic operation to generate a reconstructed image for each of the wells based on the image data captured for the respective well during each of the scans.
Abstract:
The disclosure provides microstructured articles and methods useful for detecting an analyte in a sample. The articles include microwell arrays. The articles can be used with an optical system component in methods to detect or characterize an analyte.
Abstract:
In a sample analyzing apparatus, an injector assembly injects a reagent onto a sample, and luminescent light from the sample is transmitted to a detector. The assembly may be movable toward and away from the sample. The assembly may include one or more needles that communicate with one or more reservoirs supplying reagent or other liquids. The assembly may include a light guide for communicating with the detector. A cartridge may be provided in which the assembly, one or more reservoirs, and one or more pumps are disposed. The cartridge and/or the apparatus may be configured for enabling rinsing or priming to be done outside the apparatus. The cartridge and/or the apparatus may include one or more types of sensors configured for detecting, for example, the presence of liquid or bubbles in one or more locations of the apparatus and/or the cartridge.
Abstract:
The present describes a system and method for determining the concentration of tetrahydrocannabinol (THC) including a tray comprising a first analyte including an infusion of a solvent and cannabis, a light emitting element configured to illuminate the first analyte, a light receiving element configured to receive a first light transmitted through the first analyte, and a control circuit configured to calculate a concentration of tetrahydrocannabinol in the first analyte based at least in part on the first light.
Abstract:
An electro-optical stimulation and recording system is disclosed, including a substrate and a plurality of wells coupled to the substrate. The system also includes at least one electrode set disposed proximate a respective one of the plurality of wells, wherein the electrode set comprises at least one electrode configured to collect an electric signal associated with at least a portion of the respective well. The system also includes a light-emitting element set corresponding to a respective one of the wells and configured to deliver optical stimulation to at least a portion of the respective well.
Abstract:
The invention relates to a microplate reader and a respective method, wherein the microplate reader comprises at least one measuring device and a holding device for accommodating at least one microplate and for positioning the samples-containing wells of this(these) microplate(s) in relation to the at least one measuring device. The at least one measuring device is used for detecting light which is emitted by samples in wells of a microplate inserted in this microplate reader and/or which is influenced by samples transilluminated by light in wells of a microplate inserted in this microplate reader. The microplate reader comprises a control unit for controlling the temperature of a gas atmosphere surrounding the wells containing the samples of microplates used in this microplate reader.
Abstract:
A sample holding carrier includes: a substrate to which irradiation light is entered from an under face; a first reflective film disposed on a top face side of the substrate and having electrical conductivity; a sample accommodating portion disposed on a top face side of the first reflective film and having a bottom portion; and a first current carrying part configured to apply a voltage to the first reflective film from an outside.
Abstract:
A system for detecting emissions from a sample containing nucleotide molecules contains a sample holder, an optical illumination system, an optical sensor. The sample holder includes a plurality of spatially separated reaction sites configured to hold a sample containing nucleotide molecules. The optical illumination system comprising a radiant source configured to simultaneously illuminate two or more of the reaction sites. The illumination system includes a homogenizer. An output from the homogenizer has less variation in power, energy, irradiance, or intensity than the variation in power, energy, irradiance, or intensity of the source.